Sains Malaysiana 51(3)(2022): 775-781
http://doi.org/10.17576/jsm-2022-5103-11
A Combination of UV-Vis
Spectroscopy and Chemometrics for Detection of Sappanwood (Caesalpinia sappan) Adulteration from Three Dyes
(Gabungan Spektroskopi UV-Vis dan Kemometrik untuk Pengesanan Pencemaran
Kayu Sappan (Caesalpinia sappan)
daripada Tiga Pewarna)
IRMANIDA BATUBARA1,2,*, SAADATUL HUSNA1, .MOHAMAD
RAFI1,2, TONY SUMARYADA3, SUSUMU UCHIYAMA4, BERRY JULIANDI5, SASTIA PRAMA PUTRI4 & EIICHIRO
FUKUSAKI4
1Department
of Chemistry, Faculty
of Mathematics and Natural Sciences, IPB
University, Tanjung Street, IPB
Campus Dramaga, Bogor 16680, Indonesia
2Tropical Biopharmaca Research Center, Institute of Research and Community Services, IPB University, Taman Kencana Street No. 3, IPB Campus Taman Kencana, Bogor 16128, Indonesia
3Department
of Physics, Faculty
of Mathematic and Natural Sciences, IPB
University, Meranti Street, IPB
Campus Dramaga, Bogor 16680, Indonesia
4Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
5Department of Biology, Faculty of Mathematics and Natural Sciences, IPB University, Tanjung Street, IPB Campus Dramaga, Bogor 16680, Indonesia
Received:
25 December 2020/Accepted:
27 July 2021
Abstract
Sappan wood (Caesalpinia sappan) is very well known
as a natural dye for traditional food and beverage in many countries. Recently,
there are many reports of sappan wood adulteration by adding synthetic or
natural dyes to obtain quality color and better appearance. In this study,
UV-Vis absorption spectra coupled with chemometrics were used to develop rapid
detection of sappan wood raw material adulteration (authentication) from three
dyes, i.e., sudan III, commercial textile dyes, and red yeast rice. Absorption
spectra of 13 sappan wood raw material and adulterated sappan wood with the
three dyes in two different concentrations which resulted about 78 adulterated
samples were measured with UV-Vis spectrophotometer at a wavelength range of
200-800 nm. A principal component analysis followed by discriminant analysis
was used to construct a model for the authentication of sappan wood from the
three dyes used in this study. The combination of both methods was successfully
classified sappan wood as non-adulterated and adulterated with the dyes.
Cross-validation results of the authentication model of sappan wood from sudan
III, commercial textile dyes, and red yeast rice were 94.12%, 94.12%, and
92.16% correctly classified into their groups, respectively.
Keywords: Caesalpinia sappan; chemometrics; detection; dyes; UV-Vis spectroscopy
Abstrak
Kayu sappan (Caesalpinia sappan) sangat terkenal
sebagai pewarna semula jadi untuk makanan dan minuman tradisi di banyak negara.
Baru-baru ini, terdapat banyak laporan mengenai pemalsuan kayu sappan dengan
penambahan pewarna sintetik atau semula jadi untuk mendapatkan warna yang berkualiti
dan penampilan yang lebih baik. Dalam kajian ini, spektrum penyerapan UV-Vis
yang digabungkan dengan kemometrik digunakan untuk pengembangan pengesanan
cepat pemalsuan bahan mentah kayu sappan (pengesahan) daripada tiga pewarna, iaitu, sudan III,
pewarna tekstil komersial dan beras ragi merah. Spektrum penyerapan 13 bahan
mentah kayu sappan dan 78 kayu sappan yang dipalsukan dengan pewarna tersebut
dalam dua kepekatan yang berbeza diukur dengan spektrofotometer UV-Vis pada
jarak gelombang 200-800 nm. Analisis komponen utama diikuti dengan analisis
diskriminan digunakan untuk membina model pengesahan kayu sappan daripada tiga pewarna yang digunakan dalam
kajian ini. Gabungan kedua-dua kaedah tersebut berjaya mengelaskan
kayu sappan sebagai tidak tercemar dan tercemar dengan pewarna. Hasil pengesahan
silang model pengesahan kayu sappan daripada sudan III, pewarna tekstil
komersial dan beras ragi merah didapati masing-masing ialah 94.12%, 94.12%, dan 92.16% dikelaskan dalam kumpulan mereka.
Kata kunci: Caesalpinia sappan; kemometrik; pengesanan; pewarna; spektroskopi UV-Vis
REFERENCES
Anibal, C.D.,
Rodriguez, M.S. & Albertengo, L. 2014. UV-Visible spectroscopy and
multivariate classification as a screening tool to identify adulteration of
culinary spices with sudan I and blends of sudan I + IV Dyes. Food Analytical Methods 7:
1090-1096.
Anibal,
C.D., Marta, O., Ruisanchez, I. & Callao, M.P. 2009. Determining the
adulteration of spices with sudan I-II-II-IV dyes by UV-Visible spectroscopy and
multivariate classification techniques. Talanta 79: 887-892.
Aroca-Santos,
R., Cancilla, J.C., Matute, G. & Torrecilla, J.S. 2015. Identifying and
quantifying adulterants in extra virgin olive oil of the picual varietal by
absorption spectroscopy and nonlinear modeling. Journal of Agricultural and Food Chemistry 63: 5646-5652.
Baek,
N., Jeon, S.G., Ahn, E., Hahn, J., Bahn, J.H., Jang, J.S., Cho, S., Park, J.K.
& Choi, S.Y. 2000. Anticonvulsant compounds from the wood of Caesalpinia sappan L. Archive Pharmacal Research 23: 344-348.
Batubara,
I., Mitsunaga, T. & Ohashi, H. 2010. Brazilin from Caesalpinia sappan wood as an antiacne agent. Journal of Wood Science 56: 77-81.
Bergamo,
G., Seraglio, S.K.T., Gonzaga, L.V., Fett, R. & Costa, A.C.O. 2020. Use of
visible spectrophotometric fingerprint and chemometric approaches for the differentiation
of Mimosa scabrella Bentham honeydew
honey. Journal of Food Science and
Technology 57: 3966-3972.
Boggia,
R., Casolino, M.C., Hysenaj, V., Oliveri, P. & Zunin, P.A. 2012. Screening
method based on UV-visible spectroscopy and multivariate analysis to assess
addition of filler juices and water to pomegranate juice. Food Chemistry 140: 735-741.
Brereton,
R.G. 2003. Chemometrics: Data Analysis
for the Laboratory and Chemical Plant. Chichester: John Wiley & Sons.
Chemat,
F., Huma, Z. & Khan, M.K. 2011. Applications of ultrasound in food
technology: Processing, preservation, and extraction. Ultrasonics Sonochemistry 18: 813-835.
Gad,
H.A., El-Ahmady, S.H., Abou-Shoer, M.I. & Al-Azizi, M.M. 2013. Application
of chemometrics in authentication of herbal medicines: A review. Phytochemical Analysis 24: 1-24.
Huang,
Z., Zhang, S., Xu, Y., Li, L. & Li, Y. 2014. Structural characterization of
two new orange pigments with strong yellow fluorescence. Phytochemistry Letters 10: 140-144.
Kitdamrongtham,
W., Manosroi, A., Akazawa, H., Gidado, A., Stienrut, P., Manosroi, W.,
Lohcharoenkal, W., Akihisa, T. & Manosroi, J. 2013. Potent anti-cervical
cancer activity: Synergistic effects of Thai
medicinal plants in recipe N040 selected from the MANOSROI III database. Journal of Ethnopharmacology 149:
288-296.
Lioe,
H.N., Adawiyah, D.R. & Anggraeni, R. 2012. Isolation and characterization of the major
natural dyestuff component of Brazilwood (Caesalpinia
sappan L.). International Food
Research Journal 19: 537-542.
Mukherjee,
G. & Singh, S.K. 2011. Purification and characterization of a new red
pigment from Monascus purpureus in
submerged fermentation. Process
Biochemistry 46: 188-192.
Nirmal,
N.P. & Panichayupakaranant, P. 2014. Anti-propionibacterium acnes
assay-guided purification of brazilin and preparation of brazilin rich extract
from Caesalpinia sappan heartwood. Pharmaceutical Biology 52: 1204-1207.
Nirmal,
N.P., Rajput, M.S., Prasad, R.G.S.V. & Ahmad, M. 2015. Brazilin from Caesalpinia sappan heartwood and its
pharmacological activities: A review. Asian
Pacific Journal of Tropical Medicines 8: 421-430.
Orwa,
C., Mutua, A., Kindt, R., Jamnadas, R. & Simon, A. 2017. Agroforestree
database: A tree species reference and selection guide version 4.0.
http//www.worldagroforestry.org/treedb2/AFTPDFS/Caesalpinia_sappan.pdf.
Accessed on 27 January 2020.
Rafi,
M., Jannah, R., Heryanto, R., Kautsar, A. & Septaningsih, D.A. 2018. UV-Vis
spectroscopy and chemometrics as a tool for identification and discrimination
of four Curcuma species. International
Food Research Journal 25: 643-648.
Rohaeti,
E., Muzayanah, K., Septaningsih, D.A. & Rafi, M. 2019. Fast analytical
method for authentication of chili powder from synthetic dyes using UV-Vis
spectroscopy in combination with chemometrics. Indonesian Journal of Chemistry 19: 668-674.
Wang,
T.H. & Lin, T.Z. 2007. Monascus rice products. Advances in Food Nutrition and Research 53: 123-158.
Wang,
Y.Z., Sun, S.Q. & Zhou, Y.B. 2011. Extract of the dried heartwood of Caesalpinia sappan L. attenuates
collagen-induced arthritis. Journal of
Ethnopharmacology 136: 271-278.
Wu,
S.Q., Otero, M., Unger, F.M., Goldring, M.B., Phrutivorapongkul, A., Chiari,
C., Kolb, A., Viernstein, H. & Toegel, S. 2011. Anti-inflammatory activity
of an ethanolic Caesalpinia sappan extract
in human chondrocytes and macrophages.
Journal of Ethnopharmacology 138: 364-372.
Yodsaoue, O.,
Cheenpracha, S., Karalai, C., Ponglimanont, C. & Tewtrakul, S. 2009. Anti-allergic activity of principles from the
roots and heartwoods of Caesalpinia sappan on antigen induced
b-hexosaminidase release. Phytotherapy
Research 23(7): 1028-1031.
Yudthavorasit,
S., Wongravee, K. & Leepipatpiboon, N. 2014. Characteristic fingerprint
based on gingerol derivative analysis for discrimination of ginger (Zingiber officinale) according to
geographical origin using HPLC-DAD combined with chemometrics. Food Chemistry 158: 101-111.
Zhong, S., Zhang, X. & Wang, Z. 2015.
Preparation and characterization of yellow Monascus pigments. Separation and Purification
Technology 150: 139-144.
*Corresponding author; email: ime@apps.ipb.ac.id
|