Sains Malaysiana 51(3)(2022): 883-894
http://doi.org/10.17576/jsm-2022-5103-22
Fabrication
of Magnesium-Carbonate Apatite by Conventional Sintering and Spark Plasma
Sintering for Orthopedic Implant Applications
(Fabrikasi Magnesium-Karbonat Apatit oleh Pensinteran Konvensional dan Pensinteran Percikan Plasma untuk Aplikasi Implan Ortopedik)
IWAN SETYADI1,2, TOTO SUDIRO3, BAMBANG HERMANTO3, PRIMA RIZKY OKTARI4, ACHMAD FAUZI KAMAL4, AHMAD JABIR RAHYUSSALIM4, BAMBANG SUHARNO5 & SUGENG SUPRIADI6
1Department of Metallurgical
and Materials Engineering, Faculty of Engineering, Universitas Indonesia, Depok, I 16424, Indonesia
2Center for Material
Technology, Agency for the Assessment and Application of Technology (BPPT)-Indonesia
3Research Center for Physics
(P2Fisika), Indonesian Institute of Sciences (LIPI), Indonesia
4Department Orthopedic and
Traumatology, Faculty of Medicine, Universitas Indonesia, Indonesia
5Department of Metallurgical
and Materials Engineering, Faculty of Engineering, Universitas Indonesia, Indonesia
6Department of Mechanical
Engineering, Universitas Indonesia, Indonesia
Received: 27 April 2021/Accepted: 15 August
2021
ABSTRACT
Magnesium-Carbonate Apatite (Mg-xCA)
is one of the potential magnesium composites to be developed as an alternative
biodegradable implant material. Several attempts were made to optimize its
characteristics. In this study, Mg-xCA (x = 0, 5, 10, and 15% wt) was prepared by powder metallurgy through warm
compaction (WC) and
further densified by 2 sintering process methods, namely conventional sintering (CS) and spark plasma sintering (SPS). The characterization
included density test, XRD test,
microstructure test (OM and SEM-EDS-Mapping), microhardness
test, and electrochemical test. The SPS process improves the characteristics of Mg-xCA better than the CS process.
The SPS process can increase the
relative density by about 0.7-2.4%, increase the hardness by about 2-13%, and
reduce the corrosion rate by about 32-49% compared to the initial condition
before sintering (WC). The SPS structure has a lower oxygen elemental
content than the CS structure. The sintered process with SPS is considered effective for the
fabrication of Mg-xCA powder-based composites
compared to the CS process.
Keywords: Characterization;
conventional sintering; magnesium-carbonate apatite; spark plasma sintering
ABSTRAK
Magnesium-Karbonat Apatit (Mg-xCA) adalah salah satu komposit magnesium yang berpotensi untuk dikembangkan sebagai bahan implan biodegradasi alternatif. Beberapa usaha dilakukan untuk mengoptimumkan ciri-cirinya. Dalam kajian ini, Mg-xCA (x = 0, 5, 10, dan 15% wt) disiapkan oleh metalurgi serbuk melalui pemadatan suam(WC) dan selanjutnya diperkecilkan dengan 2 kaedah proses pensinteran, iaitu pensinteran konvensional(CS) dan percikan plasma pensinteran(SPS). Pencirian tersebut merangkumi ujian kepadatan, ujianXRD, ujian struktur mikro (OM dan SEM-EDS-Pemetaan), ujian kekerasan mikro dan ujian elektrokimia. Proses SPS meningkatkan ciri Mg-xCA lebih baik daripada proses CS. Proses SPS dapat meningkatkan ketumpatan relatif sekitar 0.7-2.4%, meningkatkan kekerasan sekitar 2-13% dan mengurangkan kadar kakisan sekitar 32-49% dibandingkan dengan keadaan awal sebelum pensinteran(WC). Struktur SPS mempunyai kandungan unsur oksigen yang lebih rendah daripada strukturCS. Proses pensinteran denganSPS dianggap berkesan untuk pembuatan komposit berasaskan serbukMg-xCA berbanding dengan proses CS.
Kata kunci: Magnesium-karbonat apatit; pencirian; pensinteran konvensional; pensinteran plasma percikan
REFERENCES
Ahmad
Jabir Rahyussalim, Aldo Fransiskus Marsetio, Achmad Fauzi Kamal, Sugeng Supriadi, Iwan Setyadi, Pancar Muhammad Pribadi, Wildan Mubarok & Tri Kurniawati.
2021. Synthesis, structural characterization, degradation rate, and
biocompatibility of magnesium-carbonate apatite (Mg-Co3Ap) composite and its
potential as biodegradable orthopaedic implant base
material. Journal of Nanomaterials 2021: 6615614.
https://doi.org/10.1155/2021/6615614.
Ahmad
Jabir Rahyussalim, Sugeng Supriadi, Achmad Fauzi Kamal, Aldo Fransiskus Marsetio & Pancar Muhammad Pribadi. 2019. Magnesium-carbonate apatite metal composite:
Potential biodegradable material for orthopaedic implant. In AIP Conference Proceedings 2092: 20021. AIP Publishing LLC.
https://doi.org/10.1063/1.5096689.
Annur, D. 2017. Powder metallurgy preparation of Mg-Ca Alloy for
biodegradable implant application to. Journal of Physics: IOP Conference
Series 817. https://doi.org/10.1088/1742-6596/817/1/012062.
Ayukawa Yasunori, Yumiko Suzuki, Kanji Tsuru, Kiyoshi Koyano & Kunio
Ishikawa. 2015. Histological comparison in rats between carbonate apatite
fabricated from gypsum and sintered hydroxyapatite on bone remodeling. BioMed
Research International https://doi.org/10.1155/2015/579541.
ASTM
E384-17. 2017. Standard Test Method for Microindentation Hardness of Materials.
ASTM.
G102-89. 2015. Standard Practice for Calculation of Corrosion Rates and
Related Information from Electrochemical Measurements.
ASTM.
G5-94. 2014. Standard Reference Test Method for Making Potentiodynamic Anodic Polarization Measurements.
Atmaja Surbakti, Maximillian Ch. Oley & Eko Prasetyo. 2017. Perbandingan antara penggunaan karbonat apatit dan hidroksi apatit pada proses penutupan defek kalvaria dengan menggunakan plasma kaya trombosit. Jurnal Biomedik (Jbm) 9(2): 107-114.
https://doi.org/10.35790/jbm.9.2.2017.16359.
Center
for Material Technology (BPPT). 2017. Technical Note GL3/Alkes.
Del
Campo, R., Savoini, B., Muñoz, A., Monge, M.A. &
Pareja, R. 2017. Processing and mechanical characteristics of
magnesium-hydroxyapatite metal matrix biocomposites. Journal
of the Mechanical Behavior of Biomedical Materials 69: 135-143.
https://doi.org/10.1016/j.jmbbm.2016.12.023.
Del
Campo, R., Savoini, B., Muñoz, A., Monge, M.A. & Garcés, G. 2014. Mechanical properties and corrosion
behavior of Mg-HAP composites. Journal of the Mechanical Behavior of
Biomedical Materials 39: 238-246.
https://doi.org/10.1016/j.jmbbm.2014.07.014.
Doi,
Y., Koda, T., Adachi, M., Wakamatsu, N., Goto, T., Kamemizu, H., Moriwaki, Y. & Suwa, Y. 1995.
Pyrolysis-gas chromatography of carbonate apatites used for sintering. Journal of Biomedical Materials Research 29(11):
1451-1457. https://doi.org/10.1002/jbm.820291117.
Godavitarne, C., Robertson, A., Peters, J. & Rogers, B. 2017.
Biodegradable materials. Orthopaedics and
Trauma 31(5): 316-320. https://doi.org/10.1016/j.mporth.2017.07.011.
Gu,
X-N. & Zheng, Y-F. 2010. A review on magnesium alloys as biodegradable
materials. Frontiers of Materials Science in China 4(2): 111-115.
https://doi.org/10.1007/s11706-010-0024-1.
Gu,
X., Zhou, W., Zheng, Y., Dong, L., Xi, Y. & Chai, D. 2010. Microstructure,
mechanical property, bio-corrosion and cytotoxicity evaluations of Mg/HA
composites. Materials Science and Engineering: C 30(6): 827-832.
https://doi.org/10.1016/j.msec.2010.03.016.
Haghshenas, M. 2017. Mechanical characteristics of biodegradable magnesium
matrix composites: A review. Journal of Magnesium and Alloys 5(2):
189-201. https://doi.org/10.1016/j.jma.2017.05.001.
Hirokazu Nagai, Masako Kobayashi-Fujioka, Kenji Fujisawa, Go Ohe, Natsumi Takamaru, Kanae Hara, Daisuke Uchida, Tetsuya Tamatani,
Kunio Ishikawa & Youji Miyamoto. 2015. Effects of
low crystalline carbonate apatite on proliferation and osteoblastic
differentiation of human bone marrow cells. Journal of Materials Science:
Materials in Medicine 26(2): 1-8.
https://doi.org/10.1007/s10856-015-5431-5.
Ishikawa,
K. 2019. Carbonate apatite bone replacement: Learn from the bone. Journal of
the Ceramic Society of Japan 127(9): 595-601.
https://doi.org/10.2109/jcersj2.19042.
Iwan Setyadi, Aldo Fransiskus Marsetio, Achmad Fauzi Kamal, Rahyussalim, Sugeng Supriadi & Bambang Suharno. 2020a. Microstructure and microhardness of
carbonate apatite particle-reinforced Mg composite consolidated by warm
compaction for biodegradable implant application. Materials Research Express 7(5). https://doi.org/10.1088/2053-1591/ab7d70.
Iwan Setyadi, Pancar Muhammad Pribadi, Aldo Fransiskus Marsetio, Achmad Fauzi Kamal, Rahyusalim, Bambang Suharno & Sugeng Supriadi. 2020b. Characteristics investigation of the
initial development of miniplate made from composite of magnesium/carbonate
apatite fabricated by powder metallurgy method for biodegradable implant
applications. In Key Engineering Materials 833 KEM: 194-198. Trans Tech
Publications Ltd. https://doi.org/10.4028/www.scientific.net/KEM.833.194.
Jaiswal,
S., Manoj Kumar, R., Gupta, P., Kumaraswamy, M., Roy,
P. & Lahiri, D. 2018. Mechanical, corrosion and
biocompatibility behaviour of Mg-3Zn-HA biodegradable
composites for orthopaedic fixture accessories. Journal
of the Mechanical Behavior of Biomedical Materials 78: 442-454.
https://doi.org/10.1016/j.jmbbm.2017.11.030.
Kingston
Technical Software. n.d. Corrosion Rate Conversion.
https://www.corrosion-doctors.org/Principles/Conversion.htm.
Kokubo, T., Kushitani, H., Sakka, S., Kitsugi, T. & Yamamuro, T. 1990. Solutions able to reproduce in vivo surface‐structure
changes in bioactive glass‐ceramic A‐W3. Journal of Biomedical
Materials Research 24(6): 721-734. https://doi.org/10.1002/jbm.820240607.
Kuśnierczyk, K. & Basista, M. 2017.
Recent advances in research on magnesium alloys and magnesium–calcium phosphate
composites as biodegradable implant materials. Journal of Biomaterials
Applications 31(6): 878-900. https://doi.org/10.1177/0885328216657271.
Landi, E., Celotti, G., Logroscino,
G. & Tampieri, A. 2003. Carbonated hydroxyapatite
as bone substitute. Journal of the European Ceramic Society 23(15):
2931-2937. https://doi.org/10.1016/S0955-2219(03)00304-2.
Linhart, W., Peters, F., Lehmann, W., Schwarz, K., Schilling, A.F., Amling, M., Rueger, J.M. & Epple, M. 2000. Biologically and chemically optimized
composites of carbonated apatite and polyglycolide as bone substitution
materials. J. Biomed. Mater. Res. 54(2): 162-171.
Liu,
R., Wang, W., Chen, H., Lu, Z., Zhao, W. & Zhang, T. 2019. Densification of
pure magnesium by spark plasma sintering-discussion of sintering mechanism. Advanced
Powder Technology 30(11): 2649-2658.
https://doi.org/10.1016/j.apt.2019.08.012.
Madupalli, H., Pavan, B. & Tecklenburg, M.M.J. 2017. Carbonate
substitution in the mineral component of bone: Discriminating the structural
changes, simultaneously imposed by carbonate in A and B sites of apatite. Journal
of Solid State Chemistry 255: 27-35. https://doi.org/10.1016/j.jssc.2017.07.025.
Masayuki
Kanazawa, Kanji Tsuru, Naoyuki Fukuda, Yuta Sakemi, Yasuharu Nakashima & Kunio Ishikawa. 2017. Evaluation of carbonate apatite blocks
fabricated from dicalcium phosphate dihydrate blocks for reconstruction of
rabbit femoral and tibial defects. Journal of Materials Science: Materials
in Medicine 28(6): 85. https://doi.org/10.1007/s10856-017-5896-5.
Mohammad Khodaei, Farahnaz Nejatidanesh, Mohammad Javad Shirani, Srinivasan Iyengar, Hossein Sina & Omid Savabi. 2020. Magnesium/nano-hydroxyapatite composite for bone reconstruction: The
effect of processing method. Journal of Bionic Engineering 17(1): 92-99.
https://doi.org/10.1007/s42235-020-0007-6.
Mahmoud Abbas Ibraheem,
Abd El Aziz El Sayed Fouda, Mohamed Talaat Rashad & Fawzy Nagy Sabbahy. 2012. Sweet corrosion inhibition on API 5L-B
pipeline steel. International Scholarly Research Notices 2012: 892385.
https://doi.org/10.5402/2012/892385.
NN
n.d. Spark Plasma Sintering. http://www.subtech.com/dokuwiki/doku.php?
id = spark_plasma_sintering. Accessed on December 3,
2019.
Radha,
R. & Sreekanth. D. 2017. Insight of magnesium alloys and composites for
orthopedic implant applications - A review. Journal of Magnesium and Alloys 5(3):
286-312. https://doi.org/10.1016/j.jma.2017.08.003.
Siska Wiwanto, Lilies Dwi Sulistyani, Fourier Dzar Eljabbar Latief, Sugeng Supriadi, Bambang Pontjo Priosoeryanto & Benny Syariefsyah Latief. 2018. The
experiment of magnesium ECAP miniplate as alternative biodegradable material
(on male white New Zealand rabbits). In AIP Conference Proceedings,
1933: 20013. AIP Publishing LLC. https://doi.org/10.1063/1.5023947.
Sunil,
B.R., Ganapathy, C., Sampath Kumar, T.S. & Chakkingal,
U. 2014. Processing and mechanical behavior of lamellar structured degradable
magnesium–Hydroxyapatite implants. Journal of the Mechanical Behavior of
Biomedical Materials 40: 178-189.
https://doi.org/10.1016/j.jmbbm.2014.08.016.
Supriadi, S., Kristianto, H., Whulanza, Y., Saragih, A.S., Dhelika, R., Latief, B.S. &
Taufiq, T. 2018. Fabrication of magnesium ECAP based maxillary miniplate-typed
implant through the method of micro forming. IOP Conference Series:
Materials Science and Engineering 432: 012037.
https://doi.org/10.1088/1757-899X/432/1/012037.
Witte,
F., Feyerabend, F., Maier, P., Fischer, J., Störmer, M., Blawert, C., Dietzel, W. & Hort, N. 2007.
Biodegradable magnesium-Hydroxyapatite metal matrix composites. Biomaterials 28(13): 2163-2174. https://doi.org/10.1016/j.biomaterials.2006.12.027.
Xiong, G., Nie, Y., Ji, D., Li, J., Li, C.,
Li, W., Zhu, Y., Luo, H. & Wan, Y. 2016. Characterization of biomedical
hydroxyapatite/magnesium composites prepared by powder metallurgy assisted with
microwave sintering. Current Applied Physics 16(8): 830-836.
https://doi.org/10.1016/j.cap.2016.05.004.
Youness, R.A., Taha, M.A.
& Ibrahim, M.A. 2017. Effect of sintering temperatures on the in vitro bioactivity, molecular
structure and mechanical properties of titanium/carbonated hydroxyapatite nanobiocomposites. Journal of Molecular Structure 1150:
188-195. https://doi.org/10.1016/j.molstruc.2017.08.070.
Yunita Sari & Siska Titik Dwiyati.
2015. Korosi H2S dan CO2 pada peralatan statik di industri minyak dan gas. Jurnal Konversi Energi dan Manufaktur UNJ 2(1):
18-22.
Zheng, Y.F., Gu, X.N. & Witte, F. 2014. Biodegradable
metals. Materials Science and Engineering: R: Reports 77: 1-34. https://doi.org/10.1016/j.mser.2014.01.001.
*Corresponding
author; email: i1setyadi2810@gmail.com
|