Sains Malaysiana 51(3)(2022): 895-909

http://doi.org/10.17576/jsm-2022-5103-23

 

Optimal Adaptive Neuro-Fuzzy Inference System Architecture for Time Series Forecasting with Calendar Effect

(Seni Bina Sistem Inferens Neuro-Kabur Adaptif Optimum untuk Ramalan Siri Masa dengan Kesan Kalendar)

 

PUTRIAJI HENDIKAWATI1,2,*, SUBANAR1, ABDURAKHMAN1 & TARNO3

 

1Department of Mathematics, Gadjah Mada University, Yogyakarta, Indonesia

  2Department of Mathematics, Universitas Negeri Semarang, Semarang, Indonesia

  3Department of Statistics, Universitas Diponegoro, Semarang, Indonesia

 

Received: 19 January 2021/Accepted: 13 August 2021

 

Abstract

This paper discusses a procedure for model selection in ANFIS for time series forecasting with a calendar effect. Calendar effect is different from the usual trend and seasonal effects. Therefore, when it occurs, it will affect economic activity during that period and create new patterns that will result in inaccurate forecasts for decision making if not considered. The focus is on the model selection strategy to find the appropriate input variable and the number of membership functions (MFs) based on the Lagrange Multiplier (LM) test. The ARIMAX stochastic model is used at the preprocessing stage to capture calendar variations in the data. The calendar effect observed is the Eid al-Fitr holiday in Indonesia, a country with the largest Muslim population in the world. The data of Tanjung Priok port passengers used as a case study. The result shows that hybrid ARIMAX-ANFIS based on the LM test can be an effective procedure for model selection in ANFIS for time series with calendar effect forecasting. Empirical results show that the use of the calendar effect variable provides more accurate predictions as indicated by smaller RMSE and MAPE values than without the calendar effect variable.

 

Keywords: ANFIS; ARIMAX; calendar effect; LM test; time series

 

Abstrak

Kertas ini membincangkan prosedur pemilihan model ANFIS untuk peramalan siri masa dengan kesan kalendar. Kesan kalendar berbeza daripada aliran biasa dan kesan bermusim. Oleh itu, apabila ia berlaku, ia akan menjejaskan aktiviti ekonomi dalam tempoh tersebut dan mewujudkan corak baharu yang akan mengakibatkan ramalan yang tidak tepat untuk membuat keputusan jika tidak dipertimbangkan. Fokus adalah pada strategi pemilihan model untuk mencari pemboleh ubah input yang sesuai dan bilangan fungsi keahlian (MF) berdasarkan ujian Pengganda Lagrange (LM). Model stokastik ARIMAX digunakan pada peringkat prapemprosesan untuk mengesan variasi kalendar dalam data. Kesan kalendar yang diperhatikan ialah cuti Hari Raya Aidilfitri di Indonesia, sebuah negara dengan penduduk Islam terbesar di dunia. Data penumpang pelabuhan Tanjung Priok digunakan sebagai kajian kes. Keputusan menunjukkan bahawa ARIMAX-ANFIS hibrid berdasarkan ujian LM boleh menjadi prosedur yang berkesan untuk pemilihan model dalam ANFIS dalam siri masa dengan ramalan kesan kalendar. Keputusan empirik menunjukkan bahawa penggunaan pemboleh ubah kesan kalendar memberikan ramalan yang lebih tepat seperti yang ditunjukkan oleh nilai RMSE dan MAPE yang lebih kecil berbanding tanpa pemboleh ubah kesan kalendar.

 

Kata kunci: ANFIS; ARIMAX; kesan kalendar; siri masa; ujian LM

 

REFERENCES

Azadeh, A., Saberi, M. & Asadzadeh, S.M. 2011. An adaptive network based fuzzy inference system-auto regression - Analysis of variance algorithm for improvement of oil consumption estimation and policy making: The Cases of Canada, United Kingdom, and South Korea. Applied Mathematical Modelling 35(2): 581-593.

Box, G.E., Jenkins, G.M., Reinsel, G.C. & Ljung, G.M. 2015.  Time Series Analysis: Forecasting and Control. New York: John Wiley & Sons.

Cleveland, W.S. & Devlin, S.J. 1982. Calendar effects in monthly time series: Modeling and adjustment. Journal of the American Statistical Association 77(379): 520-528.

Duan, X., Zhang, F., Liao, M., Zou, J. & Lv, Y. 2019. Forecasting failure risk of transmission line in ultra-high-voltage networks using ANFIS. Journal of Intelligent & Fuzzy Systems 37(4): 4827-4836.

Gujarati, D.N. 2009. Basic Econometrics. 4th ed. New York: Tata McGraw-Hill Education.

Gunasekaran, M. & Ramaswami, K.S. 2014. A hybrid intelligent system of ANFIS and CAPM for stock portfolio optimization. Journal of Intelligent & Fuzzy Systems 26(1): 277-286.

Hillmer, S.C. 1982. Forecasting time series with trading day variation. Journal of Forecasting 1(4): 385-395.

Jang, J.S.R. 1996. Input Selection for ANFIS Learning. Proceedings of IEEE 5th International Fuzzy Systems 2: 1493-1499.

Jang, J.S. 1993. ANFIS: Adaptive-network-based fuzzy inference system. IEEE Transactions on Systems, Man, and Cybernetics 23(3): 665-685.

Jang, J.S.R., Sun, C.T. & Mizutani, E. 1997. Neuro-fuzzy and Soft Computing: A Computational Approach to Learning and Machine Intelligence. New Jersey: Prentice Hall.

Kamisan, N.A.B., Lee, M.H., Suhartono, S., Hussin, A.G. & Zubairi, Y.Z. 2018. Load forecasting using combination model of multiple linear regression with neural network for Malaysian City. Sains Malaysiana 47(2): 419-426.

Kling, G. & Gao, L. 2005. Calendar effects in Chinese Stock Market. Annals of Economics and Finance 6(1): 75-88.

Lee, T.H., White, H. & Granger, C.W.J. 1993. Testing for neglected nonlinearity in time series models: A comparison of neural networks methods and alternative test. Journal of Econometrics 56: 269-290.

Lei, K.S. & Wan, F. 2012. Applying ensemble learning techniques to ANFIS for air pollution index prediction in Macau. Proceedings of the 9th International Conference on Advances in Neural Networks, Part 1. pp. 509-516.

Liu, L.M. 1986. Identification of time series models in the presence of calendar variation. International Journal of Forecasting 2: 357-371.

Liu, L.M. 1980. Note - Analysis of time series with calendar effects. Management Science 26(1): 106-112.

Liu, X. & Zhou, Z. 2017. A novel prediction model based on particle swarm optimization and adaptive neuro-fuzzy inference system. Journal of Intelligent & Fuzzy Systems 33(5): 3137-3143.

Makridakis, S., Wheelwright, S.C. & Hyndman, R.J. 1997. Forecasting: Methods and Applications. 3rd ed. New York: Wiley.

Mills, T.C. & Andrew Coutts, J. 1995. Calendar effects in The London Stock Exchange FT–SE Indices. The European Journal of Finance 1: 79-93.

Nauck, D. 2000. Data analysis with neuro-fuzzy method. der Fakultat of Informur der Otto-von-Guericke Universit at Magdeburg (Unpublished).

Nayak, P.C., Sudheer, K.P., Rangan, D.M. & Ramasastri, K.S. 2004. A neuro-fuzzy computing technique for modeling hydrological time series. Journal of Hydrology 291(1-2): 52-66.

Polat, K. 2012. A novel data preprocessing method to estimate the air pollution (SO2): Neighbor-Based Feature Scaling (NBFS). Neural Computing and Applications 21: 1987-1994.

Prasad, K., Gorai, A.K. & Goyal, P. 2016. Development of ANFIS Model for air quality forecasting and input optimization for reducing the computational cost and time. Atmospheric Environment 128: 246-262.

Septiarini, T.W. & Musikasuwan, S. 2018. Investigating the performance of ANFIS Model to predict the hourly temperature in Pattani, Thailand. Journal of Physics: Conference Series 1097: 012085.

Seyyed, F.J., Abraham, A. & Al-Hajji, M. 2005. Seasonality in stock returns and volatility: The Ramadan effect. Research in International Business and Finance 19(3): 374-383.

Sood, S.K., Kaur, S. & Chahal, K.K. 2020. An intelligent framework for monitoring dengue fever risk using LDA-ANFIS. Journal of Ambient Intelligence and Smart Environments Preprint: 1-16.

Subanar Tarno, Rosadi, D. & Suhartono. 2013.  Analysis of financial time series data using Adaptive Neuro Fuzzy Inference System (ANFIS). International Journal of Computer Sciences Issues 10(2): 491-496.

Suhartono, D.E.A., Prastyo, D.D., Kuswanto, H. & Lee, M.H. 2019. Deep neural network for forecasting inflow and outflow in Indonesia. Sains Malaysiana 48(8): 1787-1798.

Sullivan, R., Timmermann, A. & White, H. 2001. Dangers of data mining: The case of calendar effects in stock returns. Journal of Econometrics 105(1): 249-286.

Sumithira, T.R. & Nirmal, A.K. 2014. Performance evaluation of standalone solar photovoltaic system using ANFIS predicted solar radiation: An experimental case study. Journal of Intelligent & Fuzzy Systems 26(1): 203-210.

Tarno, Wilandari, Y., Suparti & Ispriyanti, D. 2017. Volatility modeling of financial time series data using ANFIS. Advance Science Letters 23(7): 6562-6566.

Tarno, Subanar & D. Rosadi. 2013. Analysis of financial time series data using Adaptive Neuro Fuzzy Inference System (ANFIS). International Journal of Computer Sciences Issues 10(2): 491-496.

Terasvirta, T., Tjostheim, D. & Granger, C.W.J. 1994. Aspect modelling nonlinear time series. In Handbook of Econometrics, edited by Engle, R.F. & Mc Fadden,  D.L. Amsterdam, Netherlands: Elsevier Science B.V.4 Chapter 48: 2919-2957.

Vergin, R.C. & McGinnis, J. 1999. Revisiting the holiday effect: Is it on holiday? Applied Financial Economics 9(5): 477-482.

Wei, L., Chen, T. & Ho, T. 2011.  A hybrid model based on adaptive-network-based fuzzy inference system to forecast Taiwan Stock Market. Expert System with Applications 38(11): 13625-13631.

Yunos, Z.M., Shamsuddin, S.M. & Sallehuddin, R. 2008. Data modeling for Kuala Lumpur Composite Index with ANFIS. Second Asia International Conference on Modelling and Simulation. pp. 609-614.

 

*Corresponding author; email: putriaji.mat@mail.unnes.ac.id

 

 

 

previous