Sains Malaysiana 51(4)(2022): 1075-1084
http://doi.org/10.17576/jsm-2022-5104-10
Chemical Constituents and Anti-Neuroblastoma
Activity from Boesenbergia stenophylla
(Sebatian Kimia dan Aktiviti Anti-Neuroblastoma daripada Boesenbergia stenophylla)
PHOEBE SUSSANA PRIMUS1, MUHAMMAD HAZRAN
ISMAIL1, NABILA ELYANA ADNAN1, CAROL HSIN-YI WU2,
CHAI-LIN KAO3 & YEUN-MUN CHOO1,*
1Department
of Chemistry, Faculty of Science, University of Malaya, 50603 Kuala Lumpur,
Federal Territory, Malaysia
2Division
of Cellular and Immune Therapy, Department of Medical Research, Kaohsiung
Medical University Hospital, Kaohsiung Medical University, Taiwan
3Department
of Medicinal and Applied Chemistry, Kaohsiung Medical University, Taiwan
Received: 5 May
2021/Accepted: 6 September 2021
Abstract
Three
diarylheptanoids and one flavonoid, i.e.
7-(4-hydroxy-3-methoxyphenyl)-1-phenylhept-4-en-3-one (4),
5R-hydroxy-7-(4-hydroxy-3-methoxyphenyl)-1-phenylheptan-3-one (5),
1,7-diphenylhept-4-en-3-one (6), and 3,5,7-trihydroxyflavone (7) were isolated
and characterized from the rhizome of Boesenbergia stenophylla. Compounds 2 and 4 displayed excellent
anti-neuroblastoma activity which reduces the cell viability to 30% and 20%,
respectively. The results from the molecular docking experiments targeting the
protein kinases regulating neuroblastoma cell survival (PI3K/AKT1 signalling pathway) are consistent with that of the in vitro results. Finally, the
structures of 4-7 were elucidated using spectroscopic methods (UV, IR, NMR, and HRESIMS).
Keywords:
AKT1; anti-neuroblastoma; Boesenbergia stenophylla; N2A; PI3K
Abstrak
Tiga diarilheptanoid dan satu flavonoid, iaitu,
7-(4-hidroksi-3-metoksifenil)-1-fenillhept-4-en-3-on (4), 5R-hidroksi-7-(4- hidroksi -3- metoksifenil)-1-fenillheptan-3-on (5),
1,7-difenillhept-4-en-3-on (6) dan 3,5,7-trihidroksiflavon (7) daripada akar Boesenbergia stenophylla telah diasingkan dan dikenal pasti. Sebatian 2 dan 4 mempunyai aktiviti anti-neuroblastoma dan ia berjaya merencatkan keviabelan sel masing-masing kepada 30% dan 20%.
Hasil kajian daripada dok molekul secara in silico yang disasarkan kepada protein kinase yang mengawal atur kewujudan sel neuroblastoma (laluan isyarat PI3K/AKT1) ini adalah sejajar dengan hasil kajian in vitro. Akhir sekali, struktur sebatian 4-7 telah ditentukan dengan menggunakan kaedah spektroskopi (UV, IR, NMR dan HREIMS) dan perbandingan dengan data literatur.
Kata kunci:
AKT; anti-neuroblastom; Boesenbergia stenophylla; N2A; PI3K
REFERENCES
Afolayan, A. & Meyer, J. 1997. The
antimicrobial activity of 3, 5, 7-trihydroxyflavone isolated from the shoots of Helichrysum aureonitens. Journal of Ethnopharmacology 57(3):
177-181.
Ahmad, F.B. & Jantan, I.B. 2003. The essential oils of Boesenbergia stenophylla RM Sm. as natural sources of methyl (E)‐cinnamate. Flavour and Fragrance Journal 18(6): 485-486.
Bahmad, H.F., Chamaa,
F., Assi, S., Chalhoub,
R.M., Abou-Antoun, T. & Abou-Kheir,
W. 2019. Cancer stem cells in neuroblastoma: Expanding the therapeutic frontier. Frontiers in Molecular Neuroscience 12(1): 131.
Berman, H.M., Westbrook, J.,
Feng, Z., Gilliland, G., Bhat, T.N., Weissig, H., Shindyalov, I.N. & Bourne, P.E. 2000. The protein data
bank. Nucleic Acids Research 28(1):
235-242.
Burley, S.K., Berman, H.M., Bhikadiya, C., Bi, C., Chen, L., Di Costanzo, L., Christie,
C., Dalenberg, K., Duarte, J.M., Dutta, S., Feng, Z.,
Ghosh, S., Goodsell, D.S., Green, R.K., Guranovic, V., Guzenko, D.,
Hudson, B.P., Kalro, T., Liang, Y., Lowe, R., Namkoong, H., Peisach, E., Periskova, I., Prlic, A., Randle,
C., Rose, A., Rose, P., Sala, R., Sekharan, M., Shao,
C., Tan, L., Tao, Y.P., Valasatava, Y., Voigt, M.,
Westbrook, J., Woo, J., Yang, H., Young, J., Zhuravleva,
M. & Zardecki, C. 2019. RCSB Protein Data Bank:
Biological macromolecular structures enabling research and education in
fundamental biology, biomedicine, biotechnology and energy. Nucleic Acids Research 47(D1):
D464-D474.
Gabarra-Niecko, V., Schaller, M.D. & Dunty, J.M. 2003. FAK regulates biological processes important
for the pathogenesis of cancer. Cancer
and Metastasis Reviews 22(4): 359-374.
Gamre, S., Tyagi, M., Chatterjee, S., Patro, B.S., Chattopadhyay, S. & Goswami, D. 2021.
Synthesis of bioactive diarylheptanoids from Alpinia officinarum and their mechanism of
action for anticancer properties in breast cancer cells. Journal of Natural Products 84(2): 352-363.
Greengard, E.G. 2018. Molecularly
targeted therapy for neuroblastoma. Children 5(10): 142;
Grosso, D.F., De Mariano, M., Passoni, L., Luksch, R., Tonini, G.P. & Longo, L. 2011. Inhibition of N-linked
glycosylation impairs ALK phosphorylation and disrupts pro-survival signaling
in neuroblastoma cell lines. BMC Cancer 11(1): 525-533.
Gross, S., Rahal, R., Stransky, N., Lengauer, C. & Hoeflich, K.P. 2015. Targeting cancer with kinase
inhibitors. The Journal of Clinical
Investigation 125(5): 1780-1789.
Hennessy, B.T., Smith, D.L.,
Ram, P.T., Lu, Y. & Mills, G.B. 2005. Exploiting the PI3K/AKT pathway for
cancer drug discovery. Nature Reviews
Drug Discovery 4(12): 988-1004.
Itokawa, H., Morita, M. & Mihashi, S. 1981. Two new diarylheptanoids from Alpinia officinarum Hance. Chemical and
Pharmaceutical Bulletin 29(8): 2383-2385.
Jänne, P.A., Gray, N. & Settleman, J. 2009. Factors underlying sensitivity of cancers
to small-molecule kinase inhibitors. Nature Reviews Drug Discovery 8(9): 709-723.
Johnsen, J.I., Segerström, L., Orrego, A., Elfman, L., Henriksson, M., Kågedal, B., Eksborg, S., Sveinbjörnsson, B. & Kogner,
P. 2008. Inhibitors of mammalian target of rapamycin downregulate MYCN protein
expression and inhibit neuroblastoma growth in
vitro and in vivo. Oncogene 27(20): 2910-2922.
Karan, D., Dubey, S., Pirisi, L., Nagel, A., Pina, I., Choo, Y.M. & Hamann,
M.T. 2020. The marine natural product manzamine a inhibits cervical cancer by
targeting the SIX1 protein. Journal of
Natural Products 83(2): 286-295.
Ling, J.J., Mohamed, M., Rahmat, A. & Abu Bakar, M.F. 2010. Phytochemicals,
antioxidant properties and anticancer investigations of the different parts of
several gingers species (Boesenbergia rotunda, Boesenbergia pulchella var attenuata and Boesenbergia armeniaca). Journal of Medical Plants Research 4(1):
27-32.
London, W.B., Castleberry,
R.P., Matthay, K.K., Look, A.T., Seeger, R.C.,
Shimada, H., Thorner, P., Brodeur, G., Maris, J.M.,
Reynolds, C.P. & Cohn, S.L. 2005. Evidence for an age cutoff greater than
365 days for neuroblastoma risk group stratification in the Children's Oncology
Group. Journal of Clinical Oncology 23(27): 6459-6465.
Maris, J.M., Hogarty, M.D., Bagatell, R. &
Cohn, S.L. 2007. Neuroblastoma. Lancet 369(1): 2106-2120.
Megison, M.L., Gillory,
L.A. & Beierle, E.A. 2013. Cell survival
signaling in neuroblastoma. Anti-cancer
Agents in Medicinal Chemistry 13(4): 563-575.
Mustahil, N.A. 2009. Studies on the
chemical compositions and biological activities of essential oils of Boesenbergia spp. PhD Thesis. Universiti Malaysia Sarawak (Unpublished).
Newman, M., Lhuillier, A. &
Poulsen, A.D. 2004. Checklist of the zingiberaceae of
Malesia. Blumea. Supplement 16: 1-166.
Noor Atiekah Md Nor & Halijah Ibrahim. 2018. Chemical constituents of essential oils of Boesenbergia armeniaca and B. stenophylla (zingiberaceae)
endemic to Borneo. Pakistan Journal of
Botany 50(5): 1917-1922.
Primus, P.S., Ismail, M.H.,
Adnan, N.E., Wu, C.H., Kao, C.L. & Choo, Y.M. 2021. Stenophyllols A-C, new compounds from Boesenbergia stenophylla. Journal of Asian Natural Products Research 24(2): 146-152.
Saensouk, S. & Larsen, K. 2001. Boesenbergia baimaii, a
new species of Zingiberaceae from Thailand. Nordic Journal of Botany 21(6): 595-598.
Sanner, M.F. 1999. Python: A
programming language for software integration and development. Journal of Molecular Graphics and Modelling 17(1): 57-61.
Sudsai, T., Prabpai,
S., Kongsaeree, P., Wattanapiromsakul,
C. & Tewtrakul, S. 2014. Anti-inflammatory
activity of compounds from Boesenbergia longiflora rhizomes. Journal of Ethnopharmacology 154(2): 453-461.
Tewtrakul, S., Subhadhirasakul,
S., Puripattanavong, J. & Panphadung,
T. 2003. HIV-1 protease inhibitory substances from the rhizomes of Boesenbergia pandurata Holtt. Songklanakarin Journal
of Science and Technology 25(4): 503-508.
Tori, M., Hashimoto, A.,
Hirose, K. & Asakawa, Y. 1995. Diarylheptanoids, flavonoids, stilbenoids, sesquiterpenoids and a phenanthrene from Alnus maximowiczii. Phytochemistry 40(4): 1263-1264.
Trott, O. & Olson, A.J.
2010. AutoDock Vina: Improving the speed and accuracy
of docking with a new scoring function, efficient optimi-zation and multithreading. Journal of
Computational Chemistry 31(2): 455-461.
Tuchinda, P., Reutrakul,
V., Claeson, P., Pongprayoon,
U., Sematong, T., Santisuk,
T. & Taylor, W.C. 2002. Anti-inflammatory cyclohexenyl chalcone derivatives in Boesenbergia pandurate. Phytochemistry 59(2): 169-173.
*Corresponding
author; email: ymchoo@um.edu.my
|