Sains Malaysiana 51(4)(2022): 1075-1084

http://doi.org/10.17576/jsm-2022-5104-10

 

Chemical Constituents and Anti-Neuroblastoma Activity from Boesenbergia stenophylla

(Sebatian Kimia dan Aktiviti Anti-Neuroblastoma daripada Boesenbergia stenophylla)

 

PHOEBE SUSSANA PRIMUS1, MUHAMMAD HAZRAN ISMAIL1, NABILA ELYANA ADNAN1, CAROL HSIN-YI WU2, CHAI-LIN KAO3 & YEUN-MUN CHOO1,*

 

1Department of Chemistry, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Federal Territory, Malaysia

2Division of Cellular and Immune Therapy, Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Taiwan

3Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Taiwan

 

Received: 5 May 2021/Accepted: 6 September 2021

 

Abstract

Three diarylheptanoids and one flavonoid, i.e. 7-(4-hydroxy-3-methoxyphenyl)-1-phenylhept-4-en-3-one (4), 5R-hydroxy-7-(4-hydroxy-3-methoxyphenyl)-1-phenylheptan-3-one (5), 1,7-diphenylhept-4-en-3-one (6), and 3,5,7-trihydroxyflavone (7) were isolated and characterized from the rhizome of Boesenbergia stenophylla. Compounds 2 and 4 displayed excellent anti-neuroblastoma activity which reduces the cell viability to 30% and 20%, respectively. The results from the molecular docking experiments targeting the protein kinases regulating neuroblastoma cell survival (PI3K/AKT1 signalling pathway) are consistent with that of the in vitro results. Finally, the structures of 4-7 were elucidated using spectroscopic methods (UV, IR, NMR, and HRESIMS).

 

Keywords: AKT1; anti-neuroblastoma; Boesenbergia stenophylla; N2A; PI3K

 

Abstrak

Tiga diarilheptanoid dan satu flavonoid, iaitu, 7-(4-hidroksi-3-metoksifenil)-1-fenillhept-4-en-3-on (4), 5R-hidroksi-7-(4- hidroksi -3- metoksifenil)-1-fenillheptan-3-on (5), 1,7-difenillhept-4-en-3-on (6) dan 3,5,7-trihidroksiflavon (7) daripada akar Boesenbergia stenophylla telah diasingkan dan dikenal pasti. Sebatian 2 dan 4 mempunyai aktiviti anti-neuroblastoma dan ia berjaya merencatkan keviabelan sel masing-masing kepada 30% dan 20%. Hasil kajian daripada dok molekul secara in silico yang disasarkan kepada protein kinase yang mengawal atur kewujudan sel neuroblastoma (laluan isyarat PI3K/AKT1) ini adalah sejajar dengan hasil kajian in vitro. Akhir sekali, struktur sebatian 4-7 telah ditentukan dengan menggunakan kaedah spektroskopi (UV, IR, NMR dan HREIMS) dan perbandingan dengan data literatur.

 

Kata kunci: AKT; anti-neuroblastom; Boesenbergia stenophylla; N2A; PI3K

 

REFERENCES

Afolayan, A. & Meyer, J. 1997. The antimicrobial activity of 3, 5, 7-trihydroxyflavone isolated from the shoots of Helichrysum aureonitens. Journal of Ethnopharmacology 57(3): 177-181.

Ahmad, F.B. & Jantan, I.B. 2003. The essential oils of Boesenbergia stenophylla RM Sm. as natural sources of methyl (E)‐cinnamate. Flavour and Fragrance Journal 18(6): 485-486.

Bahmad, H.F., Chamaa, F., Assi, S., Chalhoub, R.M., Abou-Antoun, T. & Abou-Kheir, W. 2019. Cancer stem cells in neuroblastoma: Expanding the therapeutic frontier. Frontiers in Molecular Neuroscience 12(1): 131.

Berman, H.M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T.N., Weissig, H., Shindyalov, I.N. & Bourne, P.E. 2000. The protein data bank. Nucleic Acids Research 28(1): 235-242.

Burley, S.K., Berman, H.M., Bhikadiya, C., Bi, C., Chen, L., Di Costanzo, L., Christie, C., Dalenberg, K., Duarte, J.M., Dutta, S., Feng, Z., Ghosh, S., Goodsell, D.S., Green, R.K., Guranovic, V., Guzenko, D., Hudson, B.P., Kalro, T., Liang, Y., Lowe, R., Namkoong, H., Peisach, E., Periskova, I., Prlic, A., Randle, C., Rose, A., Rose, P., Sala, R., Sekharan, M., Shao, C., Tan, L., Tao, Y.P., Valasatava, Y., Voigt, M., Westbrook, J., Woo, J., Yang, H., Young, J., Zhuravleva, M. & Zardecki, C. 2019. RCSB Protein Data Bank: Biological macromolecular structures enabling research and education in fundamental biology, biomedicine, biotechnology and energy. Nucleic Acids Research 47(D1): D464-D474.

Gabarra-Niecko, V., Schaller, M.D. & Dunty, J.M. 2003. FAK regulates biological processes important for the pathogenesis of cancer. Cancer and Metastasis Reviews 22(4): 359-374.

Gamre, S., Tyagi, M., Chatterjee, S., Patro, B.S., Chattopadhyay, S. & Goswami, D. 2021. Synthesis of bioactive diarylheptanoids from Alpinia officinarum and their mechanism of action for anticancer properties in breast cancer cells. Journal of Natural Products 84(2): 352-363.

Greengard, E.G. 2018. Molecularly targeted therapy for neuroblastoma. Children 5(10): 142;

Grosso, D.F., De Mariano, M., Passoni, L., Luksch, R., Tonini, G.P. & Longo, L. 2011. Inhibition of N-linked glycosylation impairs ALK phosphorylation and disrupts pro-survival signaling in neuroblastoma cell lines. BMC Cancer 11(1): 525-533.

Gross, S., Rahal, R., Stransky, N., Lengauer, C. & Hoeflich, K.P. 2015. Targeting cancer with kinase inhibitors. The Journal of Clinical Investigation 125(5): 1780-1789.

Hennessy, B.T., Smith, D.L., Ram, P.T., Lu, Y. & Mills, G.B. 2005. Exploiting the PI3K/AKT pathway for cancer drug discovery. Nature Reviews Drug Discovery 4(12): 988-1004.

Itokawa, H., Morita, M. & Mihashi, S. 1981. Two new diarylheptanoids from Alpinia officinarum Hance. Chemical and Pharmaceutical Bulletin 29(8): 2383-2385.

Jänne, P.A., Gray, N. & Settleman, J. 2009. Factors underlying sensitivity of cancers to small-molecule kinase inhibitors. Nature Reviews Drug Discovery 8(9): 709-723.

Johnsen, J.I., Segerström, L., Orrego, A., Elfman, L., Henriksson, M., Kågedal, B., Eksborg, S., Sveinbjörnsson, B. & Kogner, P. 2008. Inhibitors of mammalian target of rapamycin downregulate MYCN protein expression and inhibit neuroblastoma growth in vitro and in vivo. Oncogene 27(20): 2910-2922.

Karan, D., Dubey, S., Pirisi, L., Nagel, A., Pina, I., Choo, Y.M. & Hamann, M.T. 2020. The marine natural product manzamine a inhibits cervical cancer by targeting the SIX1 protein. Journal of Natural Products 83(2): 286-295.

Ling, J.J., Mohamed, M., Rahmat, A. & Abu Bakar, M.F. 2010. Phytochemicals, antioxidant properties and anticancer investigations of the different parts of several gingers species (Boesenbergia rotunda, Boesenbergia pulchella var attenuata and Boesenbergia armeniaca). Journal of Medical Plants Research 4(1): 27-32.

London, W.B., Castleberry, R.P., Matthay, K.K., Look, A.T., Seeger, R.C., Shimada, H., Thorner, P., Brodeur, G., Maris, J.M., Reynolds, C.P. & Cohn, S.L. 2005. Evidence for an age cutoff greater than 365 days for neuroblastoma risk group stratification in the Children's Oncology Group. Journal of Clinical Oncology 23(27): 6459-6465.

Maris, J.M., Hogarty, M.D., Bagatell, R. & Cohn, S.L. 2007. Neuroblastoma. Lancet 369(1): 2106-2120.

Megison, M.L., Gillory, L.A. & Beierle, E.A. 2013. Cell survival signaling in neuroblastoma. Anti-cancer Agents in Medicinal Chemistry 13(4): 563-575.

Mustahil, N.A. 2009. Studies on the chemical compositions and biological activities of essential oils of Boesenbergia spp. PhD Thesis. Universiti Malaysia Sarawak (Unpublished).

Newman, M., Lhuillier, A. & Poulsen, A.D. 2004. Checklist of the zingiberaceae of Malesia. Blumea. Supplement 16: 1-166.

Noor Atiekah Md Nor & Halijah Ibrahim. 2018. Chemical constituents of essential oils of Boesenbergia armeniaca and B. stenophylla (zingiberaceae) endemic to Borneo. Pakistan Journal of Botany 50(5): 1917-1922.

Primus, P.S., Ismail, M.H., Adnan, N.E., Wu, C.H., Kao, C.L. & Choo, Y.M. 2021. Stenophyllols A-C, new compounds from Boesenbergia stenophylla. Journal of Asian Natural Products Research 24(2): 146-152.

Saensouk, S. & Larsen, K. 2001. Boesenbergia baimaii, a new species of Zingiberaceae from Thailand. Nordic Journal of Botany 21(6): 595-598.

Sanner, M.F. 1999. Python: A programming language for software integration and development. Journal of Molecular Graphics and Modelling 17(1): 57-61.

Sudsai, T., Prabpai, S., Kongsaeree, P., Wattanapiromsakul, C. & Tewtrakul, S. 2014. Anti-inflammatory activity of compounds from Boesenbergia longiflora rhizomes. Journal of Ethnopharmacology 154(2): 453-461.

Tewtrakul, S., Subhadhirasakul, S., Puripattanavong, J. & Panphadung, T. 2003. HIV-1 protease inhibitory substances from the rhizomes of Boesenbergia pandurata Holtt. Songklanakarin Journal of Science and Technology 25(4): 503-508.

Tori, M., Hashimoto, A., Hirose, K. & Asakawa, Y. 1995. Diarylheptanoids, flavonoids, stilbenoids, sesquiterpenoids and a phenanthrene from Alnus maximowiczii. Phytochemistry 40(4): 1263-1264.

Trott, O. & Olson, A.J. 2010. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimi-zation and multithreading. Journal of Computational Chemistry 31(2): 455-461.

Tuchinda, P., Reutrakul, V., Claeson, P., Pongprayoon, U., Sematong, T., Santisuk, T. & Taylor, W.C. 2002. Anti-inflammatory cyclohexenyl chalcone derivatives in Boesenbergia pandurate. Phytochemistry 59(2): 169-173.

 

*Corresponding author; email: ymchoo@um.edu.my

 

 

 

previous