Sains Malaysiana 51(4)(2022): 1213-1227
http://doi.org/10.17576/jsm-2022-5104-21
The Effect of the Quantization of the Centrifugal Stretching
on the Analysis of the Rotational Spectra of Even-Even Nuclei
(Kesan Pengkuantuman Regangan Pengempar terhadap Analisis Spektrum Putaran Nukleus Genap-Genap)
MOHD
KH. M. ABU EL SHEIKH1, ABDURAHIM A. OKHUNOV2,3,*,
HASAN ABU KASSIM1 & YOON TIEM LEONG4
1Quantum Science Center, Department of
Physics, Faculty of Science, University of
Malaya, 50603 Kuala Lumpur, Federal Territory, Malaysia
2Department of Science in Engineering, Kulliyyah of Engineering, Faculty
of Engineering, International Islamic University Malaysia, 50728 Kuala Lumpur,
Federal Territory, Malaysia
3Department of Physics, Namangan Institute of Engineering and
Technology, 160115 Namangan, Uzbekistan
4School of Physics, Universiti Sains Malaysia, 11800 Penang, Malaysia
Received: 7
March 2021/Accepted: 3 September 2021
Abstract
An approach based on the
idea that the spinning nucleus being stretched out along the symmetry axis
under the influence of some of centrifugal force has been proposed. The
stretching in this work is treated within the framework of quantum mechanics
rather than classical mechanics which had been used by Diamond Stephens and Swiatecki. Our approach led to a new formula that describes
the dependence of the moment of inertia on the angular momentum. This formula
is applied for the calculation of rotational ground state bands of even-even
nuclei in the atomic mass range
and that having energy
ratios in the range between
. The results show an overall agreement with the experimental
data up to high level energies. There are a small and systematic deviation
appears at
. This deviation increases with the increasing in
and also differs from
one nucleus to another.
Keywords: Bands; energy
level; model; properties; rotational; stretching
Abstrak
Pendekatan berdasarkan idea bahawa nukleus berputar yang meregang di sepanjang paksi simetri di bawah pengaruh beberapa daya pengempar telah diusulkan. Peregangan dalam kertas ini dirawat dalam kerangka mekanik kuantum dan bukan mekanik klasik yang telah digunakan oleh
Diamond Stephens dan Swiatecki. Pendekatan kami membawa kepada formula baharu yang menunjukkan pergantungan momen inersia pada momentum sudut.
Formula ini digunakan untuk pengiraan jalur keadaan asas putaran nukleus genap-genap dalam julat jisim atom
dan mempunyai nisbah tenaga dalam julat antara
. Hasilnya menunjukkan kesepakatan keseluruhan dengan data uji kaji hingga tenaga tahap tinggi. Terdapat penyimpangan kecil dan sistematik yang muncul pada
. Penyimpangan ini meningkat dengan peningkatan
dan juga berbeza daripada satu nukleus ke nukleus yang lain.
Kata kunci: Jalur; model; putaran; regangan; tahap tenaga
REFERENCES
Bohr, A. 1951. Nuclear
magnetic moments and atomic hyperfine structure. Physical Review 81(3): 331-335.
Bohr, A. 1976. Rotational
motion in nuclei. Reviews of Modern
Physics 48(3): 365-374.
Bohr, A. 1952. The Coupling of Nuclear Surface Oscillations
to the Motion of Individual Nucleons. Komm, Munksgaard: København. p. 40.
Bohr, A. & Mottelson,
B.R. 1998. Nuclear Structure. Vol. 1: Single-Particle Motion. Singapore:
World Scientific Publishing Co. Pte. Ltd. pp. 2-448.
Bohr, A. & Mottelson,
B.R. 1953. Rotational states in even-even nuclei. Physical Review 90(4): 717-719.
Diamond, R., Stephens, F.
& Swiatecki, W. 1964. Centrifugal Stretching of Nuclei. Lawrence Berkeley National
Laboratory. LBNL Report #:
UCRL-11421. https://escholarship.org/uc/item/7st904hq.
Eisenberg, J.M. &
Greiner, W. 1987. Nuclear Theory. New
York: Elsevier Science Pub. Co. Inc.
El Sheikh, M.K.M.A., Okhunov, A.A., Kassim, H.A. & Khandaker, M. 2020. Prediction of moment of inertia
of rotational nuclei. Chinese Physics C 44(11): 114107.
Gupta, R.K. 1969. Higher
order corrections to the rigid rotator law I(I+ 1). Canadian Journal of Physics 47(3):
299-307.
Gupta, R.K. 1967. Rotational
states in deformed even-even nuclei. Canadian
Journal of Physics 45(11): 3521-3532.
Harris, S.M. 1964.
Large-spin rotational states of deformed nuclei. Physical Review Letter 13(22): 663-665.
He, B.C., Xue, H.T., Li, L., Luo, Y.A., Zhang, Y., Pan, F. & Draayer, J.P. 2020. Non collective nucleon pairs in even–even
. Physical Review C 101(1): 014324.
Holmberg, P. & Lipas, P. 1968. A new formula for rotational energies. Nuclear Physics A 117(3): 552-560.
Hu, Z.X. & Zeng, J.Y.
1997. Comparison of the Harris and ab expressions for the description of
nuclear superdeformed rotational bands. Physical Review C 56(5): 2523-2527.
Huang, H.X., Wu, C.S. &
Zeng, J.Y. 1989. Calculation of rotational spectra of well-deformed nuclei up
to very high spins. Physical Review C 39(4): 1617-1622.
Mariscotti, M.A.J., Scharff-Goldhaber,
G. & Buck, B. 1969. Phenomenological analysis of ground state bands in
even-even nuclei. Physical Review 178(4):
1864-1887.
Morinaga, H. 1966.
Rotational bands of well-deformed nuclei studied from gamma rays following (
, xn) reactions. Nuclear Physics 75(2): 385-395.
NuDat 2.8.
http://www.nndc.bnl.gov/nudat2/.
Okhunov, A.A., Turaeva,
G., Abu Kassim, H., Khandaker,
M.U. & Rosli, N.B. 2015. Analysis of the energy
spectra of ground states of deformed nuclei in the rare-earth region. Chinese Physics C 39(4): 044101.
Preston, M.A. & Bhaduri, R.K. 1975. Structure
of the Nucleus. Broken Sound Parkway: CRC Press. pp. 3-675.
Scharff-Goldhaber, G. &
Goldhaber, A.S. 1970. Extension of the variable moment of inertia model toward
magic nuclei. Physical Review Letters 24(24):
1349.
Sood, P. 1968a. Centrifugal
stretching of a classical rotator and collective motions in nuclei. Canadian Journal of Physics 46(12): 1419-1423.
Sood, P. 1968b. Comparative
study of two-parameter models for predicting rotational energies in even-even
nuclei. Nuclear Data Sheets. Section A 4(3):
281-300.
Sood, P.C. 1967. Semiempirical formula for nuclear
rotational energies. Physical Review 161(4): 1063-1070.
Sorensen, R.A. 1973. Nuclear
moment of inertia at high spin. Reviews
of Modern Physics 45(3): 353-377.
Toki, H. & Faessler, A. 1976. Extended VMI model for asymmetric
deformed nuclei. Zeitschrift fur Physik A Atoms and Nuclei 276(1): 35-43.
Trainor, L.E.H. & Gupta,
R.K. 1971. Rotational invariance in the centrifugal stretching of deformed
nuclei. Canadian Journal of Physics 49(1): 133-143.
Usmanov, P.N. & Yusupov, E. 2021. Energy and structure states of low-lying
in 156Gd. Uzbek IIUM Engineering
Journal 22(1): 167-174.
Usmanov, P.N., Vdovin, A.I., Yusupov, E.K. & Salikhbaev, U.S. 2019. Phenomenological analysis of
characteristics of rotational bands in 158,160Gd. Physics of Particles and Nuclei Letters 16(6):
706-712.
Usmanov, P.N., Okhunov, A.A., Hasan Abu Kassim, Yusupov, E. & Salikhbaev,
U.S. 2018. Electrical characteristics of collective 0+ and 2+ states in 156,160Gd isotopes. Uzbek
Journal of Physics 20(6). https://doi.org/10.52304/.v20i6.129.
Usmanov, P.N., Okhunov, A.A., Salikhbaev, U.S.
& Vdovin, A.I. 2010. Analysis of electromagnetic
transitions in 176,178Hf1. Physics of Particles and Nuclei Letters 7(3): 185-191.
Volkov, A. 1971. A note on
the analysis of rotational spectra. Physics
Letter B 35(4): 299-302.
Wu, C.S., Zeng, J.Y., Xing,
Z., Chen, X.Q. & Meng, J. 1992. Spin determination and calculation of nuclear super deformed bands in A~ 190 region. Physics Review C 45(1): 261-274.
Xu, F.X., Wu, C.S. &
Zeng, J.Y. 1989. Relations for the coefficients in the I(I+1) expansion for rotational
spectra. Physical Review C 40(5):
2337-2341.
*Corresponding author; email:
abdurahimokhun@iium.edu.my
|