Sains Malaysiana 51(4)(2022): 1213-1227

http://doi.org/10.17576/jsm-2022-5104-21

 

The Effect of the Quantization of the Centrifugal Stretching on the Analysis of the Rotational Spectra of Even-Even Nuclei

(Kesan Pengkuantuman Regangan Pengempar terhadap Analisis Spektrum Putaran Nukleus Genap-Genap)

 

MOHD KH. M. ABU EL SHEIKH1, ABDURAHIM A. OKHUNOV2,3,*, HASAN ABU KASSIM1 & YOON TIEM LEONG4

 

1Quantum Science Center, Department of Physics, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Federal Territory, Malaysia

2Department of Science in Engineering, Kulliyyah of Engineering, Faculty of Engineering, International Islamic University Malaysia, 50728 Kuala Lumpur, Federal Territory, Malaysia

3Department of Physics, Namangan Institute of Engineering and Technology, 160115 Namangan, Uzbekistan

4School of Physics, Universiti Sains Malaysia, 11800 Penang, Malaysia

 

Received: 7 March 2021/Accepted: 3 September 2021

 

Abstract

An approach based on the idea that the spinning nucleus being stretched out along the symmetry axis under the influence of some of centrifugal force has been proposed. The stretching in this work is treated within the framework of quantum mechanics rather than classical mechanics which had been used by Diamond Stephens and Swiatecki. Our approach led to a new formula that describes the dependence of the moment of inertia on the angular momentum. This formula is applied for the calculation of rotational ground state bands of even-even nuclei in the atomic mass range  and that having energy ratios in the range between . The results show an overall agreement with the experimental data up to high level energies. There are a small and systematic deviation appears at . This deviation increases with the increasing in  and also differs from one nucleus to another.

 

Keywords: Bands; energy level; model; properties; rotational; stretching

 

 

Abstrak

Pendekatan berdasarkan idea bahawa nukleus berputar yang meregang di sepanjang paksi simetri di bawah pengaruh beberapa daya pengempar telah diusulkan. Peregangan dalam kertas ini dirawat dalam kerangka mekanik kuantum dan bukan mekanik klasik yang telah digunakan oleh Diamond Stephens dan Swiatecki. Pendekatan kami membawa kepada formula baharu yang menunjukkan pergantungan momen inersia pada momentum sudut. Formula ini digunakan untuk pengiraan jalur keadaan asas putaran nukleus genap-genap dalam julat jisim atom  dan mempunyai nisbah tenaga dalam julat antara  . Hasilnya menunjukkan kesepakatan keseluruhan dengan data uji kaji hingga tenaga tahap tinggi. Terdapat penyimpangan kecil dan sistematik yang muncul pada . Penyimpangan ini meningkat dengan peningkatan  dan juga berbeza daripada satu nukleus ke nukleus yang lain.

 

Kata kunci: Jalur; model; putaran; regangan; tahap tenaga

 

 

REFERENCES

Bohr, A. 1951. Nuclear magnetic moments and atomic hyperfine structure. Physical Review 81(3): 331-335.

Bohr, A. 1976. Rotational motion in nuclei. Reviews of Modern Physics 48(3): 365-374.

Bohr, A. 1952. The Coupling of Nuclear Surface Oscillations to the Motion of Individual Nucleons. Komm, Munksgaard: København. p. 40.

Bohr, A. & Mottelson, B.R. 1998. Nuclear Structure. Vol. 1: Single-Particle Motion. Singapore: World Scientific Publishing Co. Pte. Ltd. pp. 2-448.

Bohr, A. & Mottelson, B.R. 1953. Rotational states in even-even nuclei. Physical Review 90(4): 717-719.

Diamond, R., Stephens, F. & Swiatecki, W. 1964. Centrifugal Stretching of Nuclei. Lawrence Berkeley National Laboratory. LBNL Report #: UCRL-11421. https://escholarship.org/uc/item/7st904hq.

Eisenberg, J.M. & Greiner, W. 1987. Nuclear Theory. New York: Elsevier Science Pub. Co. Inc.

El Sheikh, M.K.M.A., Okhunov, A.A., Kassim, H.A. & Khandaker, M. 2020. Prediction of moment of inertia of rotational nuclei. Chinese Physics C 44(11): 114107.

Gupta, R.K. 1969. Higher order corrections to the rigid rotator law I(I+ 1). Canadian Journal of Physics 47(3): 299-307.

Gupta, R.K. 1967. Rotational states in deformed even-even nuclei. Canadian Journal of Physics 45(11): 3521-3532.

Harris, S.M. 1964. Large-spin rotational states of deformed nuclei. Physical Review Letter 13(22): 663-665.

He, B.C., Xue, H.T., Li, L., Luo, Y.A., Zhang, Y., Pan, F. & Draayer, J.P. 2020. Non collective nucleon pairs in even–even . Physical Review C 101(1): 014324.

Holmberg, P. & Lipas, P. 1968. A new formula for rotational energies. Nuclear Physics A 117(3): 552-560.

Hu, Z.X. & Zeng, J.Y. 1997. Comparison of the Harris and ab expressions for the description of nuclear superdeformed rotational bands. Physical Review C 56(5): 2523-2527.

Huang, H.X., Wu, C.S. & Zeng, J.Y. 1989. Calculation of rotational spectra of well-deformed nuclei up to very high spins. Physical Review C 39(4): 1617-1622.

Mariscotti, M.A.J., Scharff-Goldhaber, G. & Buck, B. 1969. Phenomenological analysis of ground state bands in even-even nuclei. Physical Review 178(4): 1864-1887.

Morinaga, H. 1966. Rotational bands of well-deformed nuclei studied from gamma rays following ( , xn) reactions. Nuclear Physics 75(2): 385-395.

NuDat 2.8. http://www.nndc.bnl.gov/nudat2/.

Okhunov, A.A., Turaeva, G., Abu Kassim, H., Khandaker, M.U. & Rosli, N.B. 2015. Analysis of the energy spectra of ground states of deformed nuclei in the rare-earth region. Chinese Physics C 39(4): 044101.

Preston, M.A. & Bhaduri, R.K. 1975. Structure of the Nucleus. Broken Sound Parkway: CRC Press. pp. 3-675.

Scharff-Goldhaber, G. & Goldhaber, A.S. 1970. Extension of the variable moment of inertia model toward magic nuclei. Physical Review Letters 24(24): 1349.

Sood, P. 1968a. Centrifugal stretching of a classical rotator and collective motions in nuclei. Canadian Journal of Physics 46(12): 1419-1423.

Sood, P. 1968b. Comparative study of two-parameter models for predicting rotational energies in even-even nuclei. Nuclear Data Sheets. Section A 4(3): 281-300.

Sood, P.C. 1967. Semiempirical formula for nuclear rotational energies. Physical Review 161(4): 1063-1070.

Sorensen, R.A. 1973. Nuclear moment of inertia at high spin. Reviews of Modern Physics 45(3): 353-377.

Toki, H. & Faessler, A. 1976. Extended VMI model for asymmetric deformed nuclei. Zeitschrift fur Physik A Atoms and Nuclei 276(1): 35-43.

Trainor, L.E.H. & Gupta, R.K. 1971. Rotational invariance in the centrifugal stretching of deformed nuclei. Canadian Journal of Physics 49(1): 133-143.

Usmanov, P.N. & Yusupov, E. 2021. Energy and structure states of low-lying in 156Gd. Uzbek IIUM Engineering Journal 22(1): 167-174.

Usmanov, P.N., Vdovin, A.I., Yusupov, E.K. & Salikhbaev, U.S. 2019. Phenomenological analysis of characteristics of rotational bands in 158,160Gd. Physics of Particles and Nuclei Letters 16(6): 706-712.

Usmanov, P.N., Okhunov, A.A., Hasan Abu Kassim, Yusupov, E. & Salikhbaev, U.S. 2018. Electrical characteristics of collective 0+ and 2+ states in 156,160Gd isotopes. Uzbek Journal of Physics 20(6). https://doi.org/10.52304/.v20i6.129.

Usmanov, P.N., Okhunov, A.A., Salikhbaev, U.S. & Vdovin, A.I. 2010. Analysis of electromagnetic transitions in 176,178Hf1. Physics of Particles and Nuclei Letters 7(3): 185-191.

Volkov, A. 1971. A note on the analysis of rotational spectra. Physics Letter B 35(4): 299-302.

Wu, C.S., Zeng, J.Y., Xing, Z., Chen, X.Q. & Meng, J. 1992. Spin determination and calculation of nuclear super deformed bands in A~ 190 region. Physics Review C 45(1): 261-274.

Xu, F.X., Wu, C.S. & Zeng, J.Y. 1989. Relations for the coefficients in the I(I+1) expansion for rotational spectra. Physical Review C 40(5): 2337-2341.

 

*Corresponding author; email: abdurahimokhun@iium.edu.my

 

 

previous