Sains Malaysiana 51(4)(2022): 977-991
http://doi.org/10.17576/jsm-2022-5104-03
Effect of Thermopriming
and Alpha-Tocopherol Spray in Triticum aestivum L. under Induced Drought Stress: A
Future Perspective of Climate Change in the Region
(Kesan Penyebuan Terma dan Semburan Alfa-Tokoferol pada Triticum aestivum L. Teraruh Tekanan Kemarau: Suatu Perspektif Masa Depan terhadap Perubahan Iklim Serantau)
UBAID ULLAH SHAKIR1,
SAMI ULLAH1, MUHAMMAD NAUMAN KHAN2,5, SAJJAD ALI2, USMAN ALI1, AKHTAR ZAMAN1, SARAH ABDUL RAZAK3,* & FETHI AHMET
OZDEMIR4
1Department of Botany, University of
Peshawar, 25120, Pakistan
2Department of Botany, Bacha Khan
University Charsadda, Pakistan
3Institute of Biological Sciences,
Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Federal
Territory, Malaysia
4Department
of Molecular Biology and Genetics, Faculty of Science and Art, Bingol University, 12000 Bingol,
Turkey
5Agriculture
University Public School and College (Boys), The University of Agriculture,
Peshawar, 25120, Pakistan
Received:
18 June 2021/Accepted: 12 September 2021
Abstract
Because of global warming and decreased river flows, all of
Pakistan's provinces, especially large parts of Sind and Baluchistan, have been
experiencing water shortages for decades. Based on such climatic changes
several management techniques have been recommended to cope through drought
stress. This study is focused on the assumption that seed soaking of Triticum aestivumL.
at low (4 °C) and high (80 °C) temperature (thermopriming) with exogenous spray
of alpha-Tocopherol (150 mol/L) will increase seedling formation and crop
production through drought stress of 5 and 10 days recommended to persuade
resistivity in test species. This study also describes resistance mechanism of
drought both in physiological and biochemical activities. Results concluded
that chlorophyll a & b, carotenoids, sugar, protein and proline (µmg/g) contents were detected maximum in
case of T1 (control) and T5 (5 days drought + 4 °C + α-Tocopherol)
enhancing growth and osmolytes component in plant whereas; antioxidant enzymes
bitterly respond under induced high drought stress and growth regulator at
p≤0.05. The study showed the degree of resistance to various drought
stressors best suited in agricultural country (Pakistan) signifying successful
demonstration of priming method with the application of α-Tocopherol as
growth regulator will help agricultural industries improve seed quality and
germination rate.
Keywords:
α-Tocopherol; antioxidant enzymes; drought stress; thermopriming; Triticum aestivum L.
Abstrak
Disebabkan pemanasan global dan aliran sungai yang berkurangan, semua wilayah Pakistan, terutama sebahagian besar Sind dan
Baluchistan telah mengalami kekurangan air selama beberapa dekad. Berdasarkan perubahan iklim tersebut, beberapa teknik pengurusan telah dicadangkan untuk mengatasi tekanan kemarau. Kajian ini memfokuskan pada anggapan bahawa rendaman benih Triticum aestivum L. pada suhu rendah (4 °C) dan tinggi (80 °C) (penyebuan termo) dengan semburan eksogen alfa-Tokoferol (150 mol/L) akan meningkatkan pembentukan anak benih dan pengeluaran tanaman melalui tekanan kekeringan selama 5 hari dan 10 hari yang disyorkan untuk mendapatkan daya tahan dalam spesies ujian. Kajian ini juga menjelaskan mekanisme tahan kekeringan dalam aktiviti fisiologi dan biokimia. Hasil kajian mendapati kandungan klorofil a & b, karotenoid, gula, protein dan prolin dikesan maksimum sekiranya T1 (kawalan) dan T5 (kekeringan 5 hari + 4 °C + α-Tokoferol meningkatkan pertumbuhan dan komponen osmolit di dalam tumbuhan sedangkan enzim antioksida kurang bertindak balas di bawah tekanan kekeringan tinggi dan pengatur pertumbuhan pada p ≤ 0.05. Kajian menunjukkan tahap ketahanan terhadap pelbagai tekanan kemarau yang paling sesuai di negara pertanian (Pakistan) yang menunjukkan kejayaan kaedah ‘penyebuan’ dengan penggunaan α-Tokoferol sebagai pengatur pertumbuhan akan membantu industri pertanian meningkatkan kualiti benih dan kadar percambahan.
Kata kunci: α-Tokoferol; enzim antioksida; penyebuan termo; tekanan kemarau; Triticum aestivum L.
REFERENCES
Abedi, T. & Pakniyat, H.
2010. Antioxidant enzymes changes in response to drought stress in ten
cultivars of oilseed rape (Brassica napus L.). Czech
J. Genet Plant Breed 46(1): 27-34.
Al-Ansari,
F. & Ksiksi, T. 2018. A quantitative
assessment of germination parameters: The case of Capsicum
annuum L. The Open Eco. J. 9(11):
13-21.
Ali, Q. & Ashraf, M.
2011. Induction of drought tolerance in maize (Zea mays L.) due to exogenous application of trehalose: Growth, photosynthesis, water relations and oxidative
defense mechanism. J. Agron. and Crop Sci. 197(4): 258-271.
Anon. 2012. Life, Lives, Livelihoods: The European Commission’s Work on Biodiversity and Development. DG Europe Aid, European Commission.
Arnon, D.I. 1949. Copper enzymes
in isolated chloroplasts. Polyphenoloxidase in Beta vulgaris. Plant Physiol. 24(1): 1-15.
Ashraf, M. & Rauf, H. 2001. Inducing salt tolerance in
maize (Zea mays L.) through seed priming with
chloride salts: Growth and ion transport
at early growth stages. Acta
Physiol. Plant 23(4): 407-414.
Babar, B.H., Cheema,
M.A., Saleem, M.F. & Wahid, A. 2014. Screening of maize hybrids for
enhancing emergence and growth parameters at different soil moisture regimes. Soil Environ. 33(1): 51-58.
Bates, L.S., Waldren, R.P. & Teare, I.D.
1973. Rapid determination of free proline for water-stress studies. Plant Soil 39(1): 205-207.
Bina,
F. & Bostani, A. 2017. Effect of salinity (NaCl)
stress on germination and early seedling growth of three medicinal plant
species. Adv. Life Sci. 4(3): 77-83.
Bradford,
K.J. 1986. Manipulation of seed water relations via osmotic priming to improve
germination under stress. HortScience 21(5): 1105-1112.
Bruggink, G.T., Ooms, J.J.J.
& Van der Toorn, P. 1999. Induction of longevity
in primed seeds. Seed Sci. Res. 9(1): 49-53.
Chen, J., Xu, W., Velten, J.,
Xin, Z. & Stout, J. 2012. Characterization of maize inbred lines for
drought and heat tolerance. J. Soil
Water Conserv. 67(5): 354-364.
Chuyong, G.B. & Acidri, T. 2017. Light and
moisture levels affect growth and physiological parameters differently in Faidherbia albida (Delile) A. Chev. seedlings. Acta Physiol. Plant 39(5): 1-6.
Cook, E.R., Seager, R., Cane, M.A. & Stahle, D.W. 2007. North American drought: Reconstructions,
causes, and consequences. Earth-Sci.
Rev. 81(1-2): 93-134.
Farhad, M.S., Babak, A.M.,
Reza, Z.M., Hassan, R.S.M. & Afshin, T. 2011. Response of proline, soluble
sugar, photosynthetic pigments, and antioxidant enzymes in potato (Solanum tuberosum L.) to different
irrigation regimes in greenhouse condition. Australian
Journal of Crop Science 5(1): 55-60.
Farooq,
M., Wahid, A., Kobayashi, N.S.M.A., Fujita, D.B.S.M.A. & Basra, S.M.A.
2009. Plant drought stress: Effects, mechanisms, and management. In Sustainable Agriculture. Springer,
Dordrecht. pp. 153-188.
Fujita, Y., Nakashima, K., Yoshida, T., Katagiri, T., Kidokoro, S.,
Kanamori, N., Umezawa, T., Fujita, M., Maruyama, K.,
Ishiyama, K. & Kobayashi, M. 2009. Three SnRK2 protein kinases are the main
positive regulators of abscisic acid signaling in response to water stress in
Arabidopsis. Plant Cell Physiol. 50(12):
2123-2132.
Ghule, P.L., Dahiphale, V.V., Jadhav, J.D.
& Palve, D.K. 2013. Absolute growth rate,
relative growth rate, net assimilation rate as influenced on dry matter weight
of Bt cotton. Internat. Res. J.
agric. Eco. & Stat. 4(1): 42-46.
Hamada,
A.M. 2000. Amelioration of drought stress by ascorbic acid, thiamine or aspirin
in wheat plants. Indian J. Plant Physiol. 5(4): 358-364.
Jaleel, C.A., Manivannan,
P.A.R., Wahid, A., Farooq, M., Al-Juburi, H.J.,
Somasundaram, R.A.M. & Panneerselvam, R. 2007.
Drought stress in plants: A review on
morphological characteristics and pigments composition. Int. J. Agric. Biol. 11(1):
100-105.
Jiang, M. & Zhang, J. 2002. Water stress‐induced abscisic acid
accumulation triggers the increased generation of reactive oxygen species and
up‐regulates the activities of antioxidant enzymes
in maize leaves. J. Exp. Bot. 53(379): 2401-2410.
Kader, M.A. 2005. A
comparison of seed germination calculation formulae and the associated
interpretation of resulting data. J.
Proc. - R. Soc. N. S. W. 138: 65-75.
Maehly, A.C. & Chance, B. 1954.
The assay of catalase and peroxidase. Methods Biochem. Anal. 1: 357-424.
Marcińska, I., Czyczyło-Mysza, I., Skrzypek,
E., Grzesiak, M.T., Popielarska-Konieczna,
M., Warchoł, M. & Grzesiak,
S. 2017. Application of photochemical parameters and several indices based on
phonotypical traits to assess intraspecific variation of oat (Avena sativa L.) tolerance to drought. Acta Physiol. Plant 39(7): 153.
Saleem, M. 2003.
Response of durum and bread wheat genotypes to drought stress: Biomass
and yield components. Asian J. Plant Sci. 2(3): 290-293.
Posmyk, M.M., Kontek,
R. & Janas, K.M. 2009. Antioxidant enzymes
activity and phenolic compounds content in red cabbage seedlings exposed to
copper stress. Ecotoxicol. Environ. Saf. 72(2):
596-602.
Ramanjulu, S. & Sudhakar, C. 2000.
Proline metabolism during dehydration in two mulberry genotypes with
contrasting drought tolerance. J.
Plant Physiol. 157(1): 81-85.
Reddy, A.R., Chaitanya, K.V. & Vivekanandan,
M. 2004. Drought-induced responses of photosynthesis and antioxidant metabolism
in higher plants. J. Plant Physiol. 161(11):
1189-1202.
Rostami, F. & Ehsanpour, A. 2009. Application of silver thiosulphate
(STS) on silver accumulation and protein pattern of potato under in vitro culture. Malays. Appl. Biol. 38(2): 49-54.
Saint Pierre, C., Crossa, J.L., Bonnett, D., Yamaguchi-Shinozaki, K. & Reynolds, M.P. 2012. Phenotyping transgenic wheat for drought resistance. J. Exp. Bot. 63: 1799-1808.
Shah,
A.N., Yang, G., Tanveer, M. & Iqbal, J. 2017. Leaf gas exchange,
source–sink relationship, and growth response of cotton to the interactive
effects of nitrogen rate and planting density. Acta Physiol. Plant 39(5): 119.
Sharma, P. & Dubey, R.S. 2005. Drought induces oxidative
stress and enhances the activities of antioxidant enzymes in growing rice
seedlings. Plant Growth Regul. 46(3): 209-221.
Shehab, G.G., Ahmed, O.K. & El-Beltagi,
H.S. 2010. Effects of various chemical agents for alleviation of drought stress
in rice plants (Oryza sativa L.). Not. Bot. Horti Agrobot. Cluj Napoca 38(1):
139-148.
Somerville, C. & Briscoe, J. 2001. Genetic engineering and water. Science 292(5525): 2217.
Tyburski, J., Dunajska,
K., Mazurek, P., Piotrowska, B. & Tretyn, A. 2009. Exogenous auxin regulates H2O2 metabolism in roots of tomato (Lycopersicon esculentum Mill.) seedlings affecting the expression
and activity of CuZn-superoxide dismutase, catalase,
and peroxidase. Acta Physiol. Plant 31(2): 249-260.
Ullah,
S., Zada, J. & Ali, S. 2016. Effect of nephthyl acetic acid foliar spray on amelioration of drought stress tolerance in maize (Zea mays L.). Commun. Soil Sci. Plant Anal. 47(12): 1542-1558.
Wang, Q., Wu, J., Lei,
T., He, B., Wu, Z., Liu, M., Mo, X., Geng, G., Li,
X., Zhou, H. & Liu, D. 2014. Temporal-spatial characteristics of severe
drought events and their impact on agriculture on a global scale. Quat. Int. 349(3): 10-21.
Yadav, S.K., Lakshmi,
N.J., Maheswari, M., Vanaja, M. & Venkateswarlu, B. 2005. Influence of water deficit at
vegetative, anthesis and grain filling stages on water relation and grain yield
in sorghum. Indian J. Plant Physiol. 10(1):
20-24.
Yuan, G.F., Jia, C.G., Li, Z., Sun, B., Zhang, L.P., Liu, N. & Wang, Q.M. 2010. Effect of brassinosteroids on drought resistance and abscisic acid concentration in tomato under water stress. Sci. Hortic. 126: 103-108.
Zhao, B., Liang, R., Ge,
L., Li, W., Xiao, H., Lin, H., Ruan, K. & Jin, Y. 2007. Identification of drought-induced microRNAs
in rice. Biochem. Biophys. Res. Commun. 354(2): 585-590.
*Corresponding author; email: sarahrazak@um.edu.my
|