Sains Malaysiana 51(4)(2022): 977-991

http://doi.org/10.17576/jsm-2022-5104-03

 

Effect of Thermopriming and Alpha-Tocopherol Spray in Triticum aestivum L. under Induced Drought Stress: A Future Perspective of Climate Change in the Region

(Kesan Penyebuan Terma dan Semburan Alfa-Tokoferol pada Triticum aestivum L. Teraruh Tekanan Kemarau: Suatu Perspektif Masa Depan terhadap Perubahan Iklim Serantau)

 

UBAID ULLAH SHAKIR1, SAMI ULLAH1, MUHAMMAD NAUMAN KHAN2,5, SAJJAD ALI2, USMAN ALI1, AKHTAR ZAMAN1, SARAH ABDUL RAZAK3,* & FETHI AHMET OZDEMIR4

 

1Department of Botany, University of Peshawar, 25120, Pakistan

2Department of Botany, Bacha Khan University Charsadda, Pakistan

3Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Federal Territory, Malaysia

4Department of Molecular Biology and Genetics, Faculty of Science and Art, Bingol University, 12000 Bingol, Turkey

5Agriculture University Public School and College (Boys), The University of Agriculture, Peshawar, 25120, Pakistan

 

Received: 18 June 2021/Accepted: 12 September 2021

 

Abstract

Because of global warming and decreased river flows, all of Pakistan's provinces, especially large parts of Sind and Baluchistan, have been experiencing water shortages for decades. Based on such climatic changes several management techniques have been recommended to cope through drought stress. This study is focused on the assumption that seed soaking of Triticum aestivumL. at low (4 °C) and high (80 °C) temperature (thermopriming) with exogenous spray of alpha-Tocopherol (150 mol/L) will increase seedling formation and crop production through drought stress of 5 and 10 days recommended to persuade resistivity in test species. This study also describes resistance mechanism of drought both in physiological and biochemical activities. Results concluded that chlorophyll a & b, carotenoids, sugar, protein and proline (µmg/g) contents were detected maximum in case of T1 (control) and T5 (5 days drought + 4 °C + α-Tocopherol) enhancing growth and osmolytes component in plant whereas; antioxidant enzymes bitterly respond under induced high drought stress and growth regulator at p≤0.05. The study showed the degree of resistance to various drought stressors best suited in agricultural country (Pakistan) signifying successful demonstration of priming method with the application of α-Tocopherol as growth regulator will help agricultural industries improve seed quality and germination rate. 

 

Keywords: α-Tocopherol; antioxidant enzymes; drought stress; thermopriming; Triticum aestivum L.

 

Abstrak

Disebabkan pemanasan global dan aliran sungai yang berkurangan, semua wilayah Pakistan, terutama sebahagian besar Sind dan Baluchistan telah mengalami kekurangan air selama beberapa dekad. Berdasarkan perubahan iklim tersebut, beberapa teknik pengurusan telah dicadangkan untuk mengatasi tekanan kemarau. Kajian ini memfokuskan pada anggapan bahawa rendaman benih Triticum aestivum L. pada suhu rendah (4 °C) dan tinggi (80 °C) (penyebuan termo) dengan semburan eksogen alfa-Tokoferol (150 mol/L) akan meningkatkan pembentukan anak benih dan pengeluaran tanaman melalui tekanan kekeringan selama 5 hari dan 10 hari yang disyorkan untuk mendapatkan daya tahan dalam spesies ujian. Kajian ini juga menjelaskan mekanisme tahan kekeringan dalam aktiviti fisiologi dan biokimia. Hasil kajian mendapati kandungan klorofil a & b, karotenoid, gula, protein dan prolin dikesan maksimum sekiranya T1 (kawalan) dan T5 (kekeringan 5 hari + 4 °C + α-Tokoferol meningkatkan pertumbuhan dan komponen osmolit di dalam tumbuhan sedangkan enzim antioksida kurang bertindak balas di bawah tekanan kekeringan tinggi dan pengatur pertumbuhan pada p ≤ 0.05.  Kajian menunjukkan tahap ketahanan terhadap pelbagai tekanan kemarau yang paling sesuai di negara pertanian (Pakistan) yang menunjukkan kejayaan kaedahpenyebuandengan penggunaan α-Tokoferol sebagai pengatur pertumbuhan akan membantu industri pertanian meningkatkan kualiti benih dan kadar percambahan.

 

Kata kunci: α-Tokoferol; enzim antioksida; penyebuan termo; tekanan kemarau; Triticum aestivum L.

 

REFERENCES

Abedi, T. & Pakniyat, H. 2010. Antioxidant enzymes changes in response to drought stress in ten cultivars of oilseed rape (Brassica napus L.). Czech J. Genet Plant Breed 46(1): 27-34.

Al-Ansari, F. & Ksiksi, T. 2018.  A quantitative assessment of germination parameters: The case of Capsicum annuum L. The Open Eco. J. 9(11): 13-21.

Ali, Q. & Ashraf, M. 2011. Induction of drought tolerance in maize (Zea mays L.) due to exogenous application of trehalose: Growth, photosynthesis, water relations and oxidative defense mechanism. J. Agron. and Crop Sci. 197(4): 258-271.

Anon. 2012. Life, Lives, Livelihoods: The European Commission’s Work on Biodiversity and Development. DG Europe Aid, European Commission.

Arnon, D.I. 1949. Copper enzymes in isolated chloroplasts. Polyphenoloxidase in Beta vulgaris. Plant Physiol. 24(1): 1-15.

Ashraf, M. & Rauf, H. 2001. Inducing salt tolerance in maize (Zea mays L.) through seed priming with chloride salts: Growth and ion transport at early growth stages. Acta Physiol. Plant 23(4): 407-414.

Babar, B.H., Cheema, M.A., Saleem, M.F. & Wahid, A. 2014. Screening of maize hybrids for enhancing emergence and growth parameters at different soil moisture regimes. Soil Environ. 33(1): 51-58.

Bates, L.S., Waldren, R.P. & Teare, I.D. 1973. Rapid determination of free proline for water-stress studies. Plant Soil 39(1): 205-207.

Bina, F. & Bostani, A. 2017. Effect of salinity (NaCl) stress on germination and early seedling growth of three medicinal plant species. Adv. Life Sci. 4(3): 77-83.

Bradford, K.J. 1986. Manipulation of seed water relations via osmotic priming to improve germination under stress. HortScience 21(5): 1105-1112.

Bruggink, G.T., Ooms, J.J.J. & Van der Toorn, P. 1999. Induction of longevity in primed seeds. Seed Sci. Res. 9(1): 49-53.

Chen, J., Xu, W., Velten, J., Xin, Z. & Stout, J. 2012. Characterization of maize inbred lines for drought and heat tolerance. J. Soil Water Conserv. 67(5): 354-364.

Chuyong, G.B. & Acidri, T. 2017. Light and moisture levels affect growth and physiological parameters differently in Faidherbia albida (Delile) A. Chev. seedlings. Acta Physiol. Plant 39(5): 1-6.

Cook, E.R., Seager, R., Cane, M.A. & Stahle, D.W. 2007. North American drought: Reconstructions, causes, and consequences. Earth-Sci. Rev. 81(1-2): 93-134.

Farhad, M.S., Babak, A.M., Reza, Z.M., Hassan, R.S.M. & Afshin, T. 2011. Response of proline, soluble sugar, photosynthetic pigments, and antioxidant enzymes in potato (Solanum tuberosum L.) to different irrigation regimes in greenhouse condition. Australian Journal of Crop Science 5(1): 55-60.

Farooq, M., Wahid, A., Kobayashi, N.S.M.A., Fujita, D.B.S.M.A. & Basra, S.M.A. 2009. Plant drought stress: Effects, mechanisms, and management. In Sustainable Agriculture.  Springer, Dordrecht. pp. 153-188.

Fujita, Y., Nakashima, K., Yoshida, T., Katagiri, T., Kidokoro, S., Kanamori, N., Umezawa, T., Fujita, M., Maruyama, K., Ishiyama, K. & Kobayashi, M. 2009. Three SnRK2 protein kinases are the main positive regulators of abscisic acid signaling in response to water stress in Arabidopsis. Plant Cell Physiol. 50(12): 2123-2132.

Ghule, P.L., Dahiphale, V.V., Jadhav, J.D. & Palve, D.K. 2013. Absolute growth rate, relative growth rate, net assimilation rate as influenced on dry matter weight of Bt cotton. Internat. Res. J. agric. Eco. & Stat. 4(1): 42-46.

Hamada, A.M. 2000. Amelioration of drought stress by ascorbic acid, thiamine or aspirin in wheat plants. Indian J. Plant Physiol. 5(4): 358-364.

Jaleel, C.A., Manivannan, P.A.R., Wahid, A., Farooq, M., Al-Juburi, H.J., Somasundaram, R.A.M. & Panneerselvam, R. 2007. Drought stress in plants: A review on morphological characteristics and pigments composition. Int. J. Agric. Biol. 11(1): 100-105.

Jiang, M. & Zhang, J. 2002. Water stressinduced abscisic acid accumulation triggers the increased generation of reactive oxygen species and upregulates the activities of antioxidant enzymes in maize leaves. J. Exp. Bot. 53(379): 2401-2410.

Kader, M.A. 2005. A comparison of seed germination calculation formulae and the associated interpretation of resulting data. J. Proc. - R. Soc. N. S. W. 138: 65-75.

Maehly, A.C. & Chance, B. 1954. The assay of catalase and peroxidase. Methods Biochem. Anal. 1: 357-424.

Marcińska, I., Czyczyło-Mysza, I., Skrzypek, E., Grzesiak, M.T., Popielarska-Konieczna, M., Warchoł, M. & Grzesiak, S. 2017. Application of photochemical parameters and several indices based on phonotypical traits to assess intraspecific variation of oat (Avena sativa L.) tolerance to drought. Acta Physiol. Plant 39(7): 153.

Saleem, M. 2003. Response of durum and bread wheat genotypes to drought stress: Biomass and yield components. Asian J. Plant Sci. 2(3): 290-293.

Posmyk, M.M., Kontek, R. & Janas, K.M. 2009. Antioxidant enzymes activity and phenolic compounds content in red cabbage seedlings exposed to copper stress. Ecotoxicol. Environ. Saf. 72(2): 596-602.

Ramanjulu, S. & Sudhakar, C. 2000. Proline metabolism during dehydration in two mulberry genotypes with contrasting drought tolerance. J. Plant Physiol. 157(1): 81-85.

Reddy, A.R., Chaitanya, K.V. & Vivekanandan, M. 2004. Drought-induced responses of photosynthesis and antioxidant metabolism in higher plants. J. Plant Physiol. 161(11): 1189-1202.

Rostami, F. & Ehsanpour, A. 2009. Application of silver thiosulphate (STS) on silver accumulation and protein pattern of potato under in vitro culture. Malays. Appl. Biol. 38(2): 49-54.

Saint Pierre, C., Crossa, J.L., Bonnett, D., Yamaguchi-Shinozaki, K. & Reynolds, M.P. 2012. Phenotyping transgenic wheat for drought resistance. J. Exp. Bot. 63: 1799-1808.

Shah, A.N., Yang, G., Tanveer, M. & Iqbal, J. 2017. Leaf gas exchange, source–sink relationship, and growth response of cotton to the interactive effects of nitrogen rate and planting density. Acta Physiol. Plant 39(5): 119.

Sharma, P. & Dubey, R.S. 2005. Drought induces oxidative stress and enhances the activities of antioxidant enzymes in growing rice seedlings. Plant Growth Regul. 46(3): 209-221.

Shehab, G.G., Ahmed, O.K. & El-Beltagi, H.S. 2010. Effects of various chemical agents for alleviation of drought stress in rice plants (Oryza sativa L.). Not. Bot. Horti Agrobot. Cluj Napoca 38(1): 139-148.

Somerville, C. & Briscoe, J. 2001. Genetic engineering and water. Science 292(5525): 2217.

Tyburski, J., Dunajska, K., Mazurek, P., Piotrowska, B. & Tretyn, A. 2009. Exogenous auxin regulates H2O2 metabolism in roots of tomato (Lycopersicon esculentum Mill.) seedlings affecting the expression and activity of CuZn-superoxide dismutase, catalase, and peroxidase. Acta Physiol. Plant 31(2): 249-260.

Ullah, S., Zada, J. & Ali, S. 2016. Effect of nephthyl acetic acid foliar spray on amelioration of drought stress tolerance in maize (Zea mays L.). Commun. Soil Sci. Plant Anal. 47(12): 1542-1558.

Wang, Q., Wu, J., Lei, T., He, B., Wu, Z., Liu, M., Mo, X., Geng, G., Li, X., Zhou, H. & Liu, D. 2014. Temporal-spatial characteristics of severe drought events and their impact on agriculture on a global scale. Quat. Int. 349(3): 10-21.

Yadav, S.K., Lakshmi, N.J., Maheswari, M., Vanaja, M. & Venkateswarlu, B. 2005. Influence of water deficit at vegetative, anthesis and grain filling stages on water relation and grain yield in sorghum. Indian J. Plant Physiol. 10(1): 20-24.

Yuan, G.F., Jia, C.G., Li, Z., Sun, B., Zhang, L.P., Liu, N. & Wang, Q.M. 2010. Effect of brassinosteroids on drought resistance and abscisic acid concentration in tomato under water stress. Sci. Hortic. 126: 103-108.

Zhao, B., Liang, R., Ge, L., Li, W., Xiao, H., Lin, H., Ruan, K. & Jin, Y. 2007. Identification of drought-induced microRNAs in rice. Biochem. Biophys. Res. Commun. 354(2): 585-590.

 

*Corresponding author; email: sarahrazak@um.edu.my

 

 

 

previous