Sains Malaysiana 51(5)(2022): 1325-1337
http://doi.org/10.17576/jsm-2022-5105-05
Comparing Manuka and Other Medical Honeys as
Adjunct to Antibiotic Therapy against Facultative Anaerobes
(Membandingkan Madu Manuka dan Madu Perubatan yang Lain sebagai Adjung kepada
Terapi Antibiotik terhadap Anaerob Fakultatif)
JUSTUS THOMAS OBIAJULU SIEVERS1,2, EMILY MOFFAT2, KHADIJAH YUSUF2, NABAA SARWAR2, ANOM BOWOLAKSONO1,3* & LORNA FYFE2
1Graduate School of Biology, Department of Biology, Faculty of Mathematics and Natural Sciences, Universitas Indonesia, Depok, Indonesia
2Department of
Dietetics, Nutrition and Biological Sciences, Queen Margaret University, Edinburgh, United Kingdom
3Cellular and
Molecular Mechanisms in Biological System (CEMBIOS) Research Group, Department of Biology, Faculty of Mathematics and
Natural Sciences, Universitas Indonesia
Depok 16424, Indonesia
Received: 3 November 2020/Accepted: 21 September 2021
Abstract
The development of antibiotic resistance in
pathogenic bacteria has created a push for new treatments, with honeys
(especially Manuka) becoming a common focus due to their strong antimicrobial
action. However, alternatives to Manuka are necessary, as its production is
vulnerable. Additionally, research is lacking on how honey affect facultative
anaerobic bacteria grown in anaerobic conditions and how honey and antibiotics
interact in these conditions. In order to understand these interactions and
find novel honey candidates, we investigated the antibacterial effects of four
honeys (two Manuka, one Chilean and one ‘Santa Cruz’ honeydew honey) against Staphylococcus aureus and Pseudomonas
aeruginosa grown aerobically and anaerobically in broth cultures, and how
the honeys affected the action of common antibiotics against these bacteria
using agar diffusion assays. We found all honeys to be highly effective at 75%
honey, with no significant differences between honeys, showing that other
honeys were suitable alternatives to Manuka at such high concentrations. At
20%, oxygen availability and bacterial species impacted the effectiveness of
honeys as Santa Cruz honey was most effective aerobically but failed
anaerobically, while Manuka honeys were effective against S. aureus but
not P. aeruginosa in both conditions, and Chilean honey was ineffective
against all samples. The addition of honey increased bacterial sensitivity to
antibiotics in some cases, varying with aerobic conditions. The antibacterial
activity of the honeys, and differences in conditions whether aerobically or
anaerobically, were not correlated with pH, antioxidant capacity or total
phenolic count. Since in all cases honeys were either beneficial or of no
effect, these results supported the use of honey as adjunct to antibiotic
therapy in scenarios such as on bandages, with honeys other than Manuka also
being worth consideration.
Keywords: Antibiotic resistance; honey;
Manuka; Pseudomonas aeruginosa; Staphylococcus aureus
Abstrak
Perkembangan kerintangan antibiotik oleh
bakteria patogen telah mendorong penekanan untuk rawatan baru dengan madu
(terutama Manuka) menjadi tumpuan umum disebabkan tindakan antimikrobnya yang
kuat. Walau bagaimanapun, alternatif untuk Manuka diperlukan kerana
pengeluarannya yang tidak terjamin. Selain itu, penyelidikan mengenai bagaimana
madu mempengaruhi bakteria anaerob fakultatif yang tumbuh dalam keadaan anaerob
serta bagaimana madu dan antibiotik berinteraksi dalam keadaan ini adalah masih
kurang. Untuk memahami interaksi ini dan mencari calon madu yang baharu, kami
mengkaji kesan antibakteria bagi empat madu (dua Manuka, satu madu Chile dan
satu madu ‘Santa Cruz’) terhadap Staphylococcus aureus dan Pseudomonas aeruginosa yang tumbuh secara aerobik serta anaerobik dalam
kultur kaldu dan bagaimana madu mempengaruhi tindakan antibiotik biasa terhadap
bakteria ini menggunakan ujian penyerapan agar. Kami mendapati semua madu
sangat berkesan pada 75% madu, tanpa perbezaan yang signifikan antara madu,
menunjukkan bahawa madu lain adalah alternatif yang sesuai untuk Manuka pada
kepekatan tinggi. Pada kepekatan 20%, kehadiran oksigen dan spesies bakteria
mempengaruhi keberkesanan madu kerana madu Santa Cruz paling berkesan secara
aerobik tetapi gagal secara anaerob, sementara madu Manuka berkesan terhadap S.
aureus tetapi tidak berkesan ke atas P. aeruginosa dalam kedua-dua
keadaan dan madu Chile tidak berkesan terhadap semua sampel. Penambahan madu
meningkatkan kesensitifan bakteria terhadap antibiotik dalam beberapa kes,
berbeza dengan keadaan aerobik. Aktiviti antibakteria madu dan perbezaan
keadaan sama ada aerobik atau anaerob, tidak berkorelasi dengan pH, kapasiti
antioksidan atau jumlah fenol. Oleh kerana dalam semua kes madu adalah sama ada
bermanfaat atau tidak mempunyai sebarang kesan, hasil ini menyokong penggunaan
madu sebagai tambahan kepada terapi antibiotik dalam senario seperti aplikasi di atas bahan pembalut, serta
mempertimbangkan madu selain daripada Manuka.
Kata kunci: Kerintangan antibiotik; madu;
Manuka; Pseudomonas aeruginosa; Staphylococcus aureus
REFERENCES
Al-Waili,
N.S. & Saloom, K.Y. 1999. Effects of topical honey on post-operative wound
infections due to gram positive and gram negative bacteria following caesarean
sections and hysterectomies. European Journal of Medical Research 4(3):
126-130.
Bailey,
J.S., Reagan, J.O., Cox, N.A. & Thomson, J.E. 1984. Comparison of aerobic
and anaerobic incubation conditions for optimal recovery of Salmonella. Journal of Food
Protection 47(8): 615-617.
Bang,
L.M., Buntting, C. & Molan, P. 2003. The effect of dilution on the rate of
hydrogen peroxide production in honey and its implications for wound healing. The
Journal of Alternative and Complementary Medicine 9(2): 267-273.
Benzie,
I.F.F. & Strain, J.J. 1996. The ferric reducing ability of plasma (FRAP) as
a measure of “antioxidant power”: the FRAP assay. Analytical Biochemistry 239(1): 70-76.
Blair,
S.E., Cokcetin, N.N., Harry, E.J. & Carter, D.A. 2009. The unusual
antibacterial activity of medical-grade Leptospermum honey: Antibacterial spectrum, resistance and
transcriptome analysis. European Journal of Clinical Microbiology &
Infectious Diseases 28(10): 1199-1208.
Blasa,
M., Candiracci, M., Accorsi, A., Piacentini, M.P., Albertini, M.C. &
Piatti, E. 2006. Raw Millefiori honey is packed full of antioxidants. Food
Chemistry 97(2): 217-222.
Bowler,
P.G., Duerden, B.I. & Armstrong, D.G. 2001. Wound microbiology and
associated approaches to wound management. Clinical Microbiology Reviews 14(2): 244-269.
Bulman,
S.E.L., Tronci, G., Goswami, P., Carr, C. & Russell, S.J. 2017.
Antibacterial properties of nonwoven wound dressings coated with Manuka honey
or methylglyoxal. Materials 10(8): 954.
Chaudhry,
N. & Mukherjee, T.K. 2016. Differential effects of temperature and pH on
the antibiotic resistance of pathogenic and non-pathogenic strains of Escherichia coli. International
Journal of Pharmacy and Pharmaceutical Sciences 8(9): 146.
Dunford,
C.E. & Hanano, R. 2004. Acceptability to patients of a honey dressing for
non-healing venous leg ulcers. Journal of Wound Care 13(5): 193-197.
Fidaleo,
M., Zuorro, A. & Lavecchia, R. 2011. Antimicrobial activity of some Italian
honeys against pathogenic bacteria. Chemical Engineering Transactions 24: 1015-1020.
Gallardo-Chacón,
J.J., Caselles, M., Izquierdo-Pulido, M. & Rius, N. 2008. Inhibitory
activity of monofloral and multifloral honeys against bacterial pathogens. Journal
of Apicultural Research 47(2): 131-136.
Greenwood,
D. 2010. Sulfonamides. In Antibiotic
and Chemotherapy. 9th ed. London: Saunders Elsevier. pp. 337-343.
Grey,
D. & Hamilton-Miller, J.M.T. 1977. Sensitivity of Pseudomonas aeruginosa to sulphonamides and trimethoprim and the
activity of the combination trimethoprim: Sulphamethoxazole. Journal of Medical Microbiology 10(3): 273-280.
Hayes,
G., Wright, N., Gardner, S.L., Telzrow, C.L., Wommack, A.J. & Vigueira,
P.A. 2018. Manuka honey and methylglyoxal increase the sensitivity of Staphylococcus
aureus to linezolid. Letters in Applied Microbiology 66(6): 491-495.
Henriques,
A.F., Jenkins, R.E., Burton, N.F. & Cooper, R.A. 2009. The intracellular
effects of manuka honey on Staphylococcus aureus. European Journal of
Clinical Microbiology & Infectious Diseases 29(1): 45.
Irwin,
N.J., McCoy, C.P. & Carson, L. 2013. Effect of pH on the in vitro susceptibility
of planktonic and biofilm-grown Proteus
mirabilis to the quinolone antimicrobials. Journal of Applied
Microbiology 115(2): 382-389.
Jenkins,
R.E. & Cooper, R. 2012a. Synergy between oxacillin and manuka honey sensitizes
methicillin-resistant Staphylococcus
aureus to oxacillin. Journal of Antimicrobial Chemotherapy 67(6):
1405-1407.
Jenkins,
R.E. & Cooper, R. 2012b. Improving antibiotic activity against wound
pathogens with Manuka honey in vitro. PLoS ONE 7(9): e45600.
Kaškonienė,
V., Maruška, A., Kornyšova, O., Charczun, N., Ligor, M. & Buszewski, B.
2009. Quantitative and qualitative determination of phenolic compounds in
honey. Cheminė Technologija 3(52): 1-7.
Kogut,
M., Lightbrown, J.W. & Isaacson, P. 1965. Streptomycin action and
anaerobiosis. Microbiology 39(2): 155-164.
Kwakman,
P.H.S., de Boer, L., Ruyter-Spira, C.P., Creemers-Molenaar, T., Helsper,
J.P.F.G., Vandenbroucke-Grauls, C.M.J.E., Zaat, S.A.J. & te Velde, A.A.
2011a. Medical-grade honey enriched with antimicrobial peptides has enhanced
activity against antibiotic-resistant pathogens. European Journal of
Clinical Microbiology & Infectious Diseases 30(2): 251-257.
Kwakman,
P.H.S., te Velde, A.A., de Boer, L., Vandenbroucke-Grauls, C.M.J.E. & Zaat,
S.A.J. 2011b. Two major medicinal honeys have different mechanisms of
bactericidal activity. PLoS ONE 6(3): e17709.
Liu,
M., Lu, J., Müller, P., Turnbull, L., Burke, C.M., Schlothauer, R.C., Carter,
D.A., Whitchurch, C.B. & Harry, E.J. 2015. Antibiotic-specific differences
in the response of Staphylococcus aureus to treatment with antimicrobials combined with Manuka honey. Frontiers in
Microbiology 5: 779.
Lu,
J., Turnbull, L., Burke, C.M., Liu, M., Carter, D.A., Schlothauer, R.C.,
Whitchurch, C.B. & Harry, E.J. 2014. Manuka-type honeys can eradicate
biofilms produced by Staphylococcus
aureus strains with different biofilm-forming abilities. PeerJ 2:
e326.
Meng,
J., Hu, B., Liu, J., Hou, Z., Meng, J.,
Jia, M. & Luo, X. 2006. Restoration of oxacillin susceptibility in
methicillin-resistant Staphylococcus
aureus by blocking the mecr1-mediated signaling pathway. Journal of
Chemotherapy 18(4): 360-365.
Molan,
P.C. 2006. The evidence supporting the use of honey as a wound dressing. The
International Journal of Lower Extremity Wounds 5(1): 40-54.
Okoro,
P., Coyle, S. & Fyfe, L. 2015. Influence of subinhibitory concentrations of
honey on toxic shock syndrome toxin -1 (TSST-1) production by two strains of Staphylococcus
aureus. Food Science and Technology 3(2): 29-36.
Packer,
J.M., Irish, J., Herbert, B.R., Hill, C., Padula, M., Blair, S.E., Carter, D.A.
& Harry, E.J. 2012. Specific non-peroxide antibacterial effect of Manuka
honey on the Staphylococcus aureus proteome. International
Journal of Antimicrobial Agents 40(1): 43-50.
Public
Health England. 2015. Health Matters: Antimicrobial Resistance. https://www.gov.uk/government/publications/health-matters-antimicrobial-resistance/health-matters-antimicrobial-resistance
Salonen,
A., Virjamo, V., Tammela, P., Fauch, L. & Julkunen-Tiitto, R. 2017.
Screening bioactivity and bioactive constituents of Nordic unifloral honeys. Food
Chemistry 237: 214-224.
Schlessinger,
D. 1988. Failure of aminoglycoside antibiotics to kill anaerobic, low-pH, and
resistant cultures. Clinical Microbiology Reviews 1(1): 54-59.
Schlünzen,
F., Zarivach, R., Harms, J., Bashan, A., Tocilj, A., Albrecht, R., Yonath, A.
& Franceschi, F. 2001. Structural basis for the interaction of antibiotics
with the peptidyl transferase centre in eubacteria. Nature 413(6858):
814-821.
Schneider,
M., Coyle, S., Warnock, M., Gow, I. & Fyfe, L. 2013. Anti-microbial
activity and composition of Manuka and Portobello honey. Phytotherapy
Research 27(8): 1162-1168.
Stagos,
D., Soulitsiotis, N., Tsadila, C., Papaeconomou, S., Arvanitis, C., Ntontos,
A., Karkanta, F., Adamou‑Androulaki, S., Petrotos, K., Spandidos, D.A.,
Kouretas, D. & Mossialos, D. 2018. Antibacterial and antioxidant activity
of different types of honey derived from Mount Olympus in Greece. International
Journal of Molecular Medicine 42(2): 726-734.
Subramanian,
R., Hebbar, H.U. & Rastogi, N.K. 2007. Processing of honey: A review. International Journal of Food
Properties 10(1): 127-143.
Udo,
E. & Grubb, W.B. 1995. Genetics of streptomycin resistance in
methicillin-sensitive multiply-resistant Staphylococcus aureus. Journal
of Chemotherapy 7(1): 12-15.
van
Overbeek, L.S., Wellington, E.M.H., Egan, S., Smalla, K., Heuer, H., Collard,
J.M., Guillaume, G., Karagouni, A.D., Nikolakopoulou, T.L. & van Elsas,
J.D. 2002. Prevalence of streptomycin-resistance genes in bacterial populations
in European habitats. FEMS Microbiology Ecology 42(2): 277-288.
World
Health Organization. 2018. High Levels of Antibiotic Resistance Found Worldwide,
New Data Shows. http://www.who.int/mediacentre/news/releases/2018/antibiotic-resistance-found/en/
World
Health Organization. 2020. Antimicrobial Resistance. https://www.who.int/news-room/fact-sheets/detail/antimicrobial-resistance
Zbuchea,
A. 2014. Up-to-date use of honey for burns treatment. Annals of Burns and
Fire Disasters 27(1): 22-30.
Zumla,
A. & Lulat, A. 1989. Honey, a remedy rediscovered. Journal of the Royal
Society of Medicine 82(7): 384-385.
Zwietering,
M.H., Jongenburger, I., Rombouts, F.M. & van’t Riet, K. 1990. Modeling of
the bacterial growth curve. Applied and Environmental Microbiology 56(6): 1875-1881.
*Corresponding author; email: alaksono@sci.ui.ac.id
|