Sains Malaysiana 51(5)(2022): 1339-1352
http://doi.org/10.17576/jsm-2022-5105-06
Water Quality and Microbial Community Assessment in
Artisanal Mining- Affected Sediments of Cikidang River, Banten, Java, Indonesia
(Penilaian Kualiti Air dan Komuniti Mikrob dalam Perlombongan Artisanal-
Sedimen Terjejas Sungai Cikidang, Banten, Java, Indonesia)
NOVERITA DIAN TAKARINA1*, AYU MAULIDA SUKMA2 , ANDRIO
ADIWIBOWO3 & SITARESMI1
1Department of Biology, Faculty of Mathematics and Natural Sciences
University of Indonesia, 16424 Beji Depok, West Java, Indonesia
2Biology Post Graduate Program, Department of Biology, Faculty
of Mathematics and Natural Sciences University of Indonesia, 16424 Beji Depok,
West Java, Indonesia
3Faculty of Public
Health University of Indonesia, 16424 Beji Depok, West Java Indonesia
Received: 5 December 2020/Accepted: 22 September 2021
Abstract
The total microbial diversity and
community in submerged sediments near mining sites, transition and intact sites
at Cikidang River, Banten were assessed using 16S rDNA sequence data and
biodiversity indices. Assessed water quality parameters in the river were water
current, dissolved oxygen (DO), pH, redox potential, salinity, temperature and
turbidity. Microbial alpha diversity used were Shannon diversity index, ChaoI
index and Operational Taxonomic Units (OTUs). These analyses indicated a total
of 50 taxa of sediment microbes. Based on Shannon diversity index, the highest
value was observed at mining site. High abundant microbes in sediments at
mining sites for phylum, class, order, family and genera levels were
represented by Proteobacteria, Gammaproteobacteria, Pseudomonadales,
Moraxellaceae, and Acinetobacter, respectively. In
contrast, high abundant microbes in the sediment of the intact site for each
taxon consisted of Firmicutes, Alphaproteobacteria, Erysipelotrichales,
Erysipelotrichaceae, and Erysipelothrix. The water quality of mining sites was characterised by
alkaline pH (8.807, 95% CI: 8.624 - 8.990) and lower redox potential (59.000
mV, 95% CI: 36.233 - 81.767) that differed significantly from the intact sites
(P<0.05). This study also confirmed that mining sites have a higher genus diversity.
Research on potential microbes of related genus as bioremediators could be
recommended for further study.
Keywords: Community; microorganism; mining; sediment; 16S rDNA sequence data
Abstrak
Seluruh kepelbagaian dan komuniti mikrob dalam
sedimen terendam berdekatan dengan tapak perlombongan, peralihan dan lokasi
utuh di Sungai Cikidang, Banten telah dinilai menggunakan data jujukan 16S rDNA
dan indeks kepelbagaian biologi. Parameter kualiti air yang dinilai di sungai
termasuk arus air, oksigen terlarut (DO), pH, potensi redoks, saliniti, suhu
dan kekeruhan. Kepelbagaian alfa mikrob yang digunakan adalah indeks kepelbagaian Shannon, indeks ChaoI dan Unit Taksonomi Operasi
(OTU). Analisis ini menunjukkan sejumlah 50 taksa mikrob sedimen. Berdasarkan
indeks kepelbagaian Shannon, nilai tertinggi diperhatikan di tapak
perlombongan. Kelimpahan mikrob yang tinggi dalam sedimen di tapak perlombongan
bagi tahap filum, kelas, order, famili dan genus masing-masing diwakili oleh Proteobacteria,
Gammaproteobacteria, Pseudomonadales, Moraxellaceae dan Acinetobacter.
Sebaliknya, mikrob yang banyak terdapat dalam sedimen di tapak utuh bagi setiap
takson terdiri daripada Firmicutes, Alphaproteobacteria, Erysipelotrichales,
Erysipelotrichaceae dan Erysipelothrix. Kualiti air di
tapak perlombongan dicirikan oleh pH alkali (8.807, 95% CI: 8.624-8.990) dan
potensi redoks rendah (59.000 mV, 95% CI:36.233-81.767) yang sangat berbeza
secara signifikan daripada tapak utuh (P<0.05). Kajian ini juga mengesahkan
bahawa tapak perlombongan mempunyai kepelbagaian genus yang lebih tinggi. Penyelidikan mengenai mikrob yang berpotensi
daripada genus yang berkaitan sebagai bioremediasi boleh disarankan untuk kajian lanjutan.
Kata
kunci: Data jujukan 16S rDNA; komuniti; mikroorganisma; perlombongan; sedimen
REFERENCES
Abundo, M.E.C., Ngunjiri, J.M.,
Taylor, K.J.M., Ji, H., Ghorbani, A., Mahesh, K.C., Weber, B.P., Johnson, T.J.
& Lee, C.W. 2021. Assessment of two DNA extraction kits for profiling
poultry respiratory microbiota from multiple sample types. PLoS ONE 16(1): e0241732.
Adibe, A., Onuoha, G. & Chibo,
J. 2020. Microbiological examination of water and sediment samples collected
from the Imo River at the Onuimo Market Section in Obowo, Imo State, Nigeria. East African Scholars Journal of Agriculture
and Life Science 3(6): 181-188.
Amelia, T.S.M.,
Lau, N.S.,
Amirul, A.A. & Bhubalan, K. 2020. Metagenomic data on bacterial diversity profiling of high-microbial-abundance
tropical marine sponges Aaptos aaptos and Xestospongia muta from waters off
Terengganu, South China Sea. Data in Brief 31(10957): 1-11.
Anderson, C.R. & Cook, G.M. 2004. Isolation and characterization of arsenate-reducing bacteria
from arsenic-contaminated sites in New Zealand. Current Microbiology 48(5): 341-347.
Atapaththu, K.S.S.,
Asaeda, T., Yamamuro, M. & Kamiya, H. 2017. Effects of water turbulence on
plant, sediment and water quality in reed (Phragmites
australis) community. Ekológia
(Bratislava) 36(1): 1-9.
Bachmann, T.M., Friese, K. & Zachmann, D.W. 2001. Redox and pH conditions in the water column and in the
sediments of an acidic mining lake. Journal of
Geochemical Exploration 73(2): 75-86.
Basu, A., Panda, S.S. & Dhal, N.K. 2015. Potential microbial diversity in
chromium mining areas: A review. Bulletin of Environment,
Pharmacology and Life Sciences 4(8):
158-169.
Batt, C.A. 2014. Alcaligenes. In Encyclopedia of Food and Microbiology, 2nd ed., edited by Batt, C.A. & Tortorello, M.L.,
Amsterdam: Elsevier. pp. 38-41.
Bergogne-Bérézin, E. 2014.
Bacteria: Acinetobacter. In Encyclopedia of Food Safety, Vol 1, edited by Motarjemi, Y. Elsevier
Science & Technology. pp. 337-341.
Bowman, J.P. 2011. 14 -
Protein-based analysis and other new and emerging non-nucleic acid-based
methods for tracing and investigating foodborne
pathogens. In Tracing Pathogens in the
Food Chain, edited by Brul, S., Fratamico, P.M. & McMeekin, T.A., Elsevier. pp. 292-341.
Böer, S.I., Hedtkamp, S.I.C., Van
Beusekom, J.E.E., Fuhrman, J.A., Boetius, A. & Ramette, A. 2009. Time- and sediment depth-related variations in bacterial
diversity and community structure in subtidal sands. Multidisciplinary
Journal of Microbial Ecology 3(7):
780-791.
Cai, Y., Zhang, H., Yuan, G. & Li, F. 2017. Sources, speciation and transformation of arsenic in the gold
mining impacted Jiehe River, China. Appllied Geochemistry 84: 254-261.
Campaner, V.P., Luiz-Silva, W. & Machado, W. 2014. Geochemistry of acid mine drainage from a coal mining area
and processes controlling metal attenuation in stream waters, southern Brazil. Anais da Academia Brasileira de Ciências 86(2): 539-554.
Chidambaram, D., Hennebel, T., Taghavi, S., Mast, J., Boon, N., Verstraete, W., van der Lelie, D. & Fitts, J.P. 2010. Concomitant microbial generation of palladium nanoparticles
and hydrogen to immobilize chromate. Environmental
Science & Technology 44 (19): 7635-7640.
Chodak, M., Gołębiewski,
M., Morawska-Płoskonka, J., Kuduk, K. & Niklińska, M. 2015. Soil chemical properties affect the reaction of forest
soil bacteria to drought and rewetting stress. Annals of Microbiology 65(3):
1627-1637.
Chorost, M.S., Smith, N.C., Hutter,
J.N., Ong, A.C., Stam, J.A., McGann, P.T., Hinkle, M.K., Schaecher, K.E. &
Kamau, E. 2018. Bacteraemia due to Microbacterium paraoxydans in a
patient with chronic kidney disease, refractory hypertension and sarcoidosis. Journal
of Medical Microbiology Case Report 5(11): e005169.
Deng, R., Tang, Z., Hou, B., Ren,
B., Wang, Z., Zhu, C., Kelly, S. & Hursthouse, A. 2020. Microbial diversity in soils from antimony mining sites: Geochemical control promotes species
enrichment. Environmental Chemistry
Letters 18(3): 911-922.
de Jesus Pereira, A. 2009. Environmental impact of artisanal
gold mining in the Pungwe River Basin. In Proceedings of Mining and Water. DAAD alumni expert seminar Freiberg Online Geology.
dos Santos Furtado, A.L. &
Casper, P. 2000. Different methods for extracting bacteria from freshwater
sediment and a simple method to measure bacterial production in sediment
samples. Journal of Microbiological
Methods 41(3):
249-257.
Du, Y., Yu, X. &
Wang, G. 2012. Massilia tieshanensis sp. nov., isolated from mining soil. International
Journal of Systematic and Evolutionary Microbiology 62(10): 2356-2362.
Edgar, R.C., Haas, B.J.,
Clemente, J.C.,
Quince, C. & Knight, R. 2011. UCHIME
improves sensitivity and speed of chimera detection. Bioinformatics 27(16): 2194-200.
Edgar, R.C. 2013. UPARSE: Highly accurate OTU sequences from
microbial amplicon reads. Nature Methods 10(10):
996-998.
Eisler, R. 2004. Arsenic hazards to
humans, plants, and animals from gold mining. Reviews of Environmental Contamination and Toxicology 180: 133-165.
Fatimawali, Kepel, B.J., Gani, M.A.
& Tallei, T.E. 2020. Comparison of bacterial community structure and diversity in traditional
gold mining waste disposal site and rice field by using a metabarcoding approach. International Journal of Microbiology 2020: 1858732.
Fernandes, C.C., Kishi, L.T., Lopes, E.M.,
Omori, W.P., Souza, J.A.M., de,
Alves, L.M.C. & de M. Lemos, E.G. 2018. Bacterial
communities in mining soils and surrounding areas under regeneration process in
a former ore mine. Brazilian Journal of Microbiology 49(3):
489-502.
Figueiredo,
G.G.O., Lopes, V.R., Romano, T. & Camara, M.C. 2020. Chapter 22 - Clostridium. In Beneficial Microbes in Agro-Ecology, edited by Amaresan, N., Kumar,
M.S., Annapurna, K., Kumar, K. & Sankaranarayanan, A. Elsevier.
Fukami, J., Nogueira, M.A., Araujo,
R.S. & Hungria, M. 2016. Accessing inoculation methods of maize and wheat
with Azospirillum brasilense. AMB Express 6(1): 1-13.
Funoh, K.N. 2014. The Impacts of Artisanal Gold
Mining on Local
Livelihoods and the Environment in the Forested
Areas of Cameroon.
Working Paper 150, Bogor: CIFOR.
Gafur, N.A., Sakakibara, M., Sano,
S. & Sera, K. 2018. A case study of heavy metal pollution in water of bone
river by artisanal small-scale gold mine activities in eastern part of
Gorontalo, Indonesia. Water 10(11): 1507.
Gibbons, S.M., Jones, E.,
Bearquiver, A., Blackwolf, F., Roundstone, W., Scott, N., Hooker, J., Madsen,
R., Coleman, M.L. & Gilbert, J.A. 2014. Human and
environmental impacts on river sediment microbial communities. PLoS ONE 9(5): e97435.
Girmay, M. 2018. Assessment for
artisanal gold mining impacts on vegetation ecology at Shire Districts. International Journal of Mining
Science 4(4): 38-43.
Haas, B.J., Gevers, D., Earl, A.M.,
Feldgarden, M., Ward, D.V., Giannoukos, G., Ciulla, D., Tabbaa, D., Highlander,
S.K., Sodergren, E. & Methé, B. 2011. Chimeric 16S rRNA sequence formation
and detection in Sanger and 454-pyrosequenced PCR amplicons. Genome Research 21(3): 494-504.
Hatam, I., Petticrew,
E.L., French, T.D., Owen, N., Laval, B. & Baldwin, S.A. 2019. The
bacterial community of Quesnel Lake sediments impacted by a catastrophic mine
tailings spill differ in composition from those at undisturbed locations-two
years post-spill. Scientific
Reports 9(1): 2705.
He, M.Z., Hu, T.G.,
Cheng, B.R., Chen, X.H., Nie, K.H., Zhang, L.Y. & Cheng, S.Y. 2014.
Research progress on phytoremediation to polluted environments by mine tailings
in arid regions. China Desert 34(5):
1329-1336.
Hewson, I. & Fuhrman, J.A. 2006. Spatial and vertical biogeography of coral reef sediment
bacterial and diazotroph communities. Marine Ecology Progress Series 306: 79-86.
Hewson, I., Jacobson-Meyers, M.E. & Fuhrman, J.A. 2007. Diversity and biogeography of bacterial assemblages in
surface sediments across the San Pedro Basin, Southern California Borderlands. Environmental
Microbiology 9(4):
923-933.
Hofacker, A.F., Behrens, S., Voegelin, A., Kaegi, R., Lösekann-Behrens, T., Kappler, A. & Kretzschmar, R. 2015. Clostridium species as metallic copper-forming
bacteria in soil under reducing conditions. Geomicrobiology Journal 32(2): 130-139.
Ji, H., Zhang, Y.,
Bararunyeretse, P. & Li, H. 2018. Characterization of microbial communities
of soils from gold mine tailings and identification of mercury-resistant
strain. Ecotoxicology and Environmental
Safety 165: 182-193.
Kurniawan, W., Kusmana, C., Basuni,
S., Munandar, A. & Kholil, K. 2013. Landuse conflicts
analysis at Mount Halimun Salak National Park. Jurnal Pengelolaan Sumberdaya Alam dan Lingkungan 3(1): 23-30.
Ke, L.Q.,
Li, P.D., Xu, J.P., Wang, Q.S., Wang, L.L. & Wen, H.P. 2019. Microbial
communities and soil chemical features associated with commercial production of
the medicinal mushroom Ganoderma lingzhi in soil. Scientific Reports 9(1): 15839.
Li, S., Wu, J., Huo,
Y., Zhao, X. & Xue, L. 2021. Profiling
multiple heavy metal contamination and bacterial communities surrounding an
iron tailing pond in Northwest China. Science
of The Total Environment 752: 141827.
Locey, K.J. & Lennon, J.T. 2016. Scaling laws predict global microbial diversity. Proceedings of the National Academy of
Sciences of the United States of America 113(21):
5970-5975.
Macdonald, K., Lund, M. & Blanchette, M. 2015. Impacts of artisanal small-scale gold mining on water
quality of a tropical river (Surow River, Ghana). In Proceeding of the 10th
International Conference on Acid Rock Drainage & IMWA Annual Conference.
Magoč, T. & Salzberg, S.L. 2011. FLASH: Fast length adjustment of short reads to improve
genome assemblies. Bioinformatics 27(21): 2957-2963.
Maleke, M., Valverde, A.,
Gomez-Arias, A., Cason, E.D., Vermeulen, J.G., Coetsee-Hugo, L., Swart, H., van
Heerden, E. & Castillo, J. 2019. Anaerobic reduction of europium by a Clostridium strain as a strategy for
rare earth biorecovery. Scientific
Reports 9(1): 14339.
Martín, A., Arias, J., López, J.,
Santos, L., Venegas, C., Duarte, M., Ortíz-Ardila, A., de Parra, N., Campos, C.
& Zambrano, C.C. 2020. Evaluation of the effect of gold mining on the water
quality in Monterrey, Bolívar (Colombia). Water 12(9): 2523.
Meaza, H., Ali, M., Tesfamariam, Z. & Abebe, N. 2017. Impacts of artisanal gold mining systems on soil and woody
vegetation in the semi-arid environment of northern Ethiopia. Singapore Journal of Tropical Geography 38(3):
386-401.
Melchiorre, E.B., Orwin, P.M., Reith, F., Rea, M.A.D., Yahn, J. & Allison, R. 2018. Biological and geochemical development of placer
gold deposits at Rich Hill, Arizona, USA. Minerals 8(2): 56.
Navitasari, L., Joko,
T., Murti, R.H. & Ariwiyanto T. 2020. Rhizobacterial community structure in
grafted tomato plants infected by Ralstonia
solanacearum. Biodiversitas 21(10): 4888-4895.
Poduch, E. & Kotra, L.P. 2007. Acinetobacter Infections. In xPharm: The Comprehensive Pharmacology
Reference, edited by Enna, S.J. &
Bylund, D.B. Amsterdam, Boston: Elsevier.
Polymenakou, P.N., Bertilsson, S.,
Tselepides, A. & Stephanou, E.G. 2005. Links between
geographic location, environmental factors, and microbial community composition
in sediments of the Eastern Mediterranean Sea. Microbial Ecology 49(3): 367-378.
Pomaranski, E.K., Griffin, M.J.,
Camus, A.C., Armwood, A.R., Shelley, J., Waldbieser, G.C., LaFrentz, B.R.,
García, J.C., Yanong, R. & Soto, E. 2020. Description of Erysipelothrix piscisicarius sp. nov.,
an emergent fish pathogen, and assessment of virulence using a tiger barb (Puntigrus tetrazona) infection model. International
Journal of Systematic and Evolutionary Microbiology 70(2): 857-867.
Quast, C., Pruesse, E., Yilmaz, P.,
Gerken, J., Schweer, T., Yarza, P., Peplies, J. & Glöckner, F. O. 2013. The
SILVA ribosomal RNA gene database project: improved data processing and
web-based tools. Nucleic Acids Research 41(1):
D590-D596.
Samanta, I. & Bandyopadhyay,
S. 2020. Antimicrobial Resistance in
Agriculture: Perspective, Policy and Mitigation. Elsevier.
Sheaves, M., Johnston, R., Miller, K. & Nelson, P.N. 2018.
Impact of oil palm development on the integrity of riparian vegetation of a
tropical coastal. Agriculture,
Ecosystems and Environment 262: 1-10.
Shukla, D., Vaghela, K. & Jain,
N. 2017. Assessment of physico-chemical and bacteriologic water quality
parameters: A review. International Journal of Pharmacy and Integrated Life Sciences 5(2):
1-17.
Steenhoudt, O. & Vanderleyden,
J. 2000. Azospirillum, a free-living
nitrogen-fixing bacterium closely associated with grasses: Genetic, biochemical and ecological
aspects. FEMS Microbiology Reviews 24(4): 487-506.
Wang, J., Wang, C., Li, J., Bai,
P., Li, Q., Shen, M., Li, R., Li, T. & Zhao, J. 2018. Comparative genomics
of degradative Novosphingobium strains with special reference to
microcystin-degrading Novosphingobium sp. THN1. Frontiers in Microbiology 9(2238): 1-17.
Zhang, W., Ki, J.S. & Qian, P.Y. 2008. Microbial diversity in polluted harbor sediments I: Bacterial community assessment based on
four clone libraries of 16S rDNA. Estuarine, Coastal
and Shelf Science 76(3):
668-681.
Zhang, L., Zhao, T., Wang, Q., Li,
L., Shen, T. & Gao, G. 2019. Bacterial
community composition in aquatic and sediment samples with spatiotemporal
dynamics in large, shallow, eutrophic Lake Chaohu, China. Journal of Freshwater Ecology 34(1): 575-589.
Zhang, X., Wang, P., Ma, L., Guo,
R., Zhang, Y., Wang, P., Zhao, J. & Liu, J. 2021. Differences in the oral
and intestinal microbiotas in pregnant women varying in periodontitis and
gestational diabetes mellitus conditions. Journal
of Oral Microbiology 13(1): 1883382.
*Corresponding author; email: noverita.dian@sci.ui.ac.id
|