Sains Malaysiana 51(5)(2022): 1353-1362

http://doi.org/10.17576/jsm-2022-5105-07

 

Sensitivity of Proteus vulgaris to Zinc Oxide Nanoparticles

(Kesensitifan Proteus vulgaris terhadap Nanozarah Zink Oksida)

 

SINOUVASSANE DJEARAMANE1,*, THARANI RAVINTHARAN1, SHAROLYNNE XIAO TONG LIANG1, LING SHING WONG2, MAHADEVA RAO U.S.3 & SENTHILKUMAR BALASUBRAMANIAN4

 

1Department of Biomedical Science, Faculty of Science, Universiti Tunku Abdul Rahman, 31900 Kampar, Perak Darul Ridzuan, Malaysia

2Life Science Division, Faculty of Health and Life Sciences, INTI International University, 71800 Nilai, Negeri Sembilan Darul Khusus, Malaysia

3Biochemistry Unit, Faculty of Medicine, Universiti Sultan Zainal Abidin, 20400, Kuala Terengganu, Terengganu Darul Iman, Malaysia

4Department of Zoology, Thiruvalluvar University, 632115 Vellore, Tamilnadu, India

 

Received: 25 September 2020/Accepted: 21 September 2021

 

Abstract

Zinc oxide nanoparticle (ZnO NP) has become a popular choice in nanomedicine and in the treatment of infections. The present study investigated the sensitivity of Proteus vulgaris to ZnO NPs. The bacteriostatic and bactericidal effects on P. vulgaris were determined by using turbidity and colony count methods. The oxidative stress induced by the treatment of ZnO NPs was evaluated by investigating the level of intracellular reactive oxygen species (ROS) along with lipid peroxidation (LP) analysis. The results showed the highest bacterial growth inhibition of 76.21±1.91 and 87.49±3.29% determined using the turbidity and colony count methods, respectively. The highest oxidative stress effects were observed in P. vulgaris exposed to 100 µg/mL of ZnO NPs for 24 h as shown by 510.90±108.53% increase in ROS production and 328.77±44.36% increase in LP level. The Fourier transform infrared spectroscopy (FTIR) spectrum illustrated the possible involvement of functional groups such as amine, alkane, acid and alkene from the bacterial cell wall in allowing the surface attachment of nanoparticles on the bacterial cells. Hence, the present study clearly demonstrated the sensitivity of P. vulgaris to ZnO NPs.

 

Keywords: Antibacterial property; oxidative stress; Proteus vulgaris; sensitivity; zinc oxide nanoparticles

 

Abstrak

Nanozarah zink oksida (ZnO NP) telah menjadi pilihan popular dalam nanoperubatan serta dalam rawatan jangkitan. Kajian ini meneliti kesensitifan Proteus vulgaris terhadap ZnO NP. Kesan bakteriostatik dan bakterisid P. vulgaris ditentukan dengan menggunakan kaedah kekeruhan dan penghitungan koloni. Tekanan oksidatif yang disebabkan oleh rawatan ZnO NP dinilai dengan menentukan tahap spesies oksigen reaktif (ROS) intrasel bersama dengan analisis peroksidasi lipid (LP). Hasil menunjukkan perencatan pertumbuhan bakteria tertinggi iaitu 76.21±1.91 dan 87.49±3.29% masing-masing ditentukan menggunakan kaedah kekeruhan dan penghitungan koloni. Kesan tekanan oksidatif tertinggi diperhatikan pada P. vulgaris yang terdedah kepada 100 µg/mL ZnO NP selama 24 jam seperti yang ditunjukkan oleh peningkatan pengeluaran ROS sebanyak 510.90±108.53% dan peningkatan tahap LP sebanyak 328.77±44.36%. Spektrum transformasi Fourier inframerah (FTIR) menunjukkan kemungkinan penglibatan kumpulan berfungsi seperti amina, alkana, asid dan alkena daripada dinding sel bakteria yang membolehkan pelekatan permukaan nanozarah pada sel bakteria. Oleh itu, kajian ini menunjukkan dengan jelas kesensitifan P. vulgaris terhadap ZnO NP.

 

Kata kunci: Kesensitifan; nanozarah zink oksida; Proteus vulgaris; sifat antibakteria; tekanan oksidatif

 

REFERENCES

Agarwal, H., Menon, S., Kumar, S.V. & Rajeshkumar, S. 2018. Mechanism study on antibacterial action of zinc oxide nanoparticles synthesized using green route. Chemico-Biological Interactions 286: 60-70.

Akbar, A., Sadiq, M.B., Ali, I., Muhammad, N., Rehman, Z., Khan, M.N., Muhammad, J., Khan, S.A., Rehman, F.U. & Anal, A.K. 2019. Synthesis and antimicrobial activity of zinc oxide nanoparticles against foodborne pathogens Salmonella typhimurium and Staphylococcus aureus. Biocatalysis and Agricultural Biotechnology 17: 36-42.

Djearamane, S., Wong, L.S., Lim, Y.M. & Lee, P.F. 2020. Oxidative stress effects of zinc oxide nanoparticles on fresh water microalga Haematococcus pluivalis. Ecology, Environment and Conservation 26(2): 663-668.

Djearamane, S., Lim, Y.M., Wong, L.S. & Lee, P.F. 2019. Cellular accumulation and cytotoxic effects of zinc oxide nanoparticles in microalga Haematococcus pluvialis. PeerJ 7: e7582.

Drummen, G.P., van Liebergen, L.C.M., den Kamp, J.A.F.O. & Post, J.A. 2002. C11-BODIPY (581/591), an oxidation-sensitive fluorescent lipid peroxidation probe: (micro) spectroscopic characterization and validation of methodology. Free Radical Biology and Medicine 33(4): 473-490.

Dutta, R.K., Nenavathu, B.P., Gangishetty, M.K. & Reddy, A.V.R. 2012. Studies on antibacterial activity of ZnO nanoparticles by ROS induced lipid peroxidation. Colloids and Surfaces B: Biointerfaces 94: 143-150.

Elshama, S.S., Abdallah, M.E. & Abdel-Karim, R.I. 2018. Zinc oxide nanoparticles: Therapeutic benefits and toxicological hazards. The Open Nanomedicine Journal 5: 16-22.

Gupta, A., Mumtaz, S., Li, C.H., Hussain, I. & Rotelo, V.M. 2019. Combatting antibiotics-resistant bacteria using nanomaterial. Chemical Society Reviews 48(2): 415-427.

Iswarya, R., Vaseeharan, B., Kalyani, S., Banumathi, B., Govindarajan, M., Alharbi, N.S., Kadaikunnan, S., Al-Anbr, M.N., Khaled, J.M. & Benelli, G. 2018. Facile green synthesis of zinc oxide nanoparticles using Ulva lactuca seaweed extract and evaluation of their photocatalytic, antibiofilm and insecticidal activity. Journal of Photochemistry and Photobiology, B: Biology 178: 249-258.

Khezerlou, A., Alizadeh-Sani, M., Azizi-Lalabadi, M. & Ehsani, A. 2018. Nanoparticles and their antimicrobial properties against pathogens including bacteria, fungi, parasites and viruses. Microbial Pathogenesis 123: 505-526.

Kumar, A., Pandey, A.K., Singh, S.S., Shanker, R. & Dhawan, A. 2011. Engineered ZnO and TiO2 nanoparticles induce oxidative stress and DNA damage leading to reduced viability of Escherichia coli. Free Radical Biology and Medicine 51(10): 1872-1881.

Kumar, V.V. & Anthony, S.P. 2016. Antimicrobial studies of metal and metal oxide nanoparticles. In Surface Chemistry of Nanobiomaterials: Application of Nanobiomaterials Volume 3, edited by Grumezescu, A.M. Kidlington, Oxford: Elsevier Inc. pp. 265-300.

Liang, S.X.T., Wong, L.S., Lim, Y.M., Lee, P.F. & Djearamane, S. 2020. Effects of zinc oxide nanoparticles on Streptococcus pyogenes. South African Journal of Chemical Engineering 34: 63-71.

Manyasree, D., Kiranmayi, P. & Kolli, V.R. 2018. Characterization and antibacterial activity of ZnO nanoparticles synthesized by co precipitation method. International Journal of Applied Pharmaceutics 10(6): 224-228.

Mirzaei, H. & Darroudi, M. 2017. Zinc oxide nanoparticles: Biological synthesis and biomedical applications. Ceramics International 43(1): 907-914.

Mishra, P.K., Mishra, H., Ekielski, A., Talegaonkar, S. & Vaidya, B. 2017. Zinc oxide nanoparticles: A promising nanomaterial for biomedical applications. Drug Discovery Today 22(12): 1825-1834.

Raghupathi, K.R., Koodali, R.T. & Manna, A.C. 2011. Size-dependent bacterial growth inhibition and mechanism of antibacterial activity of zinc oxide nanoparticles. Langmuir 27(7): 4020-4028.

Ranjbar-Omid, M., Arzanlou, M., Amani, M., Al-Hashem, S.K.S., Mozafari, N.A. & Doghaheh, H.P. 2015. Allicin from garlic inhibits the biofilm formation and urease activity of Proteus mirabilis in vitro. FEMS Microbiology Letters 362(9): fnv049.

Reiniers, M.J., van Golen, R.F., Bonnet, S., Broekgaarden, M., van Gulik, T.M., Egmond, M.R. & Heger, M. 2017. Preparation and practical applications of 2’,7’-Dichlorofluoresceinin redox assays. Analytical Chemistry 87(7): 3853-3857.

Silverstein, R.M., Bassler, G.C. & Morrill, T.C. 1981. Spectrometric Identification of Organic Compounds. 4th ed.  New York: John Wiley and Sons.

Sirelkhatim, A., Mahmud, S., Seeni, A., Kaus, N.H.M., Ann, L.C., Bakhori, S.K.M., Hasan, H. & Mohamad, D. 2015. Review on zinc oxide nanoparticles: Antibacterial activity and toxicity mechanism. Nano-Micro Letters 7(3): 219-242.

University of Colorado. 2011a. IR spectroscopy tutorial: Amines. https://www.orgchemboulder.com/Spectroscopy/irtutor/aminesir.shtml. Accessed on 27 April 2021.

University of Colorado. 2011b. IR spectroscopy tutorial: Alkenes.  https://orgchemboulder.com/Spectroscopy/irtutor/alkenesir.shtml. Accessed on 27 April 2021.

Varadavenkatesan, T., Lyubchik, E., Pai, S., Pugazhendhi, A., Vinayagam, R. & Selvaraj, R. 2019. Photocatalytic degradation of Rhodamine B by zinc oxide nanoparticles synthesized using the leaf extract of Cyanometra ramiflora. Journal of Photochemistry and Photobiology B: Biology 119: 111621.

von Moos, N. & Slaveykova, V.I. 2014. Oxidative stress induced by inorganic nanoparticles in abteria and aquatic microalgae-state of the art and knowledge gaps. Nanotoxicology 8(6): 605-630.

 

*Corresponding author; email: sinouvassane@utar.edu.my

 

previous