Sains
Malaysiana 51(5)(2022): 1353-1362
http://doi.org/10.17576/jsm-2022-5105-07
Sensitivity of Proteus vulgaris to Zinc Oxide
Nanoparticles
(Kesensitifan Proteus
vulgaris terhadap
Nanozarah Zink Oksida)
SINOUVASSANE DJEARAMANE1,*, THARANI RAVINTHARAN1, SHAROLYNNE XIAO TONG
LIANG1, LING SHING WONG2, MAHADEVA RAO U.S.3 & SENTHILKUMAR
BALASUBRAMANIAN4
1Department of Biomedical
Science, Faculty of Science, Universiti Tunku Abdul
Rahman, 31900 Kampar, Perak Darul
Ridzuan, Malaysia
2Life Science Division,
Faculty of Health and Life Sciences, INTI International
University, 71800 Nilai, Negeri Sembilan Darul Khusus, Malaysia
3Biochemistry Unit,
Faculty of Medicine, Universiti Sultan Zainal Abidin, 20400,
Kuala Terengganu, Terengganu Darul Iman, Malaysia
4Department of Zoology,
Thiruvalluvar University, 632115 Vellore, Tamilnadu, India
Received: 25 September 2020/Accepted: 21 September 2021
Abstract
Zinc oxide nanoparticle (ZnO NP) has become a popular choice
in nanomedicine and in the treatment of infections. The present study
investigated the sensitivity of Proteus vulgaris to ZnO NPs. The
bacteriostatic and bactericidal effects on P. vulgaris were determined
by using turbidity and colony count methods. The oxidative stress induced by
the treatment of ZnO NPs was evaluated by investigating the level of
intracellular reactive oxygen species (ROS) along with lipid peroxidation (LP)
analysis. The results showed the highest bacterial growth
inhibition of 76.21±1.91
and 87.49±3.29% determined using the turbidity and colony count methods,
respectively. The highest oxidative stress effects were
observed in P. vulgaris exposed to 100 µg/mL of ZnO NPs for 24 h as
shown by 510.90±108.53% increase in ROS production and 328.77±44.36% increase in LP level.
The Fourier transform infrared
spectroscopy (FTIR) spectrum illustrated the possible involvement of functional
groups such as amine, alkane, acid and alkene from the bacterial cell wall in
allowing the surface attachment of nanoparticles on the bacterial cells. Hence,
the present study clearly demonstrated the sensitivity of P. vulgaris to
ZnO NPs.
Keywords: Antibacterial property; oxidative stress; Proteus
vulgaris; sensitivity; zinc oxide nanoparticles
Abstrak
Nanozarah zink oksida (ZnO NP)
telah menjadi pilihan popular dalam nanoperubatan serta dalam rawatan
jangkitan. Kajian ini meneliti kesensitifan Proteus vulgaris terhadap
ZnO NP. Kesan bakteriostatik dan bakterisid P. vulgaris ditentukan
dengan menggunakan kaedah kekeruhan dan penghitungan koloni. Tekanan oksidatif
yang disebabkan oleh rawatan ZnO NP dinilai dengan menentukan tahap spesies
oksigen reaktif (ROS) intrasel bersama dengan analisis peroksidasi lipid (LP). Hasil
menunjukkan perencatan pertumbuhan bakteria tertinggi iaitu 76.21±1.91 dan
87.49±3.29% masing-masing ditentukan menggunakan kaedah kekeruhan dan
penghitungan koloni. Kesan tekanan oksidatif tertinggi diperhatikan pada P.
vulgaris yang terdedah kepada 100 µg/mL ZnO NP selama 24 jam seperti yang
ditunjukkan oleh peningkatan pengeluaran ROS sebanyak 510.90±108.53% dan
peningkatan tahap LP sebanyak 328.77±44.36%. Spektrum transformasi Fourier
inframerah (FTIR) menunjukkan kemungkinan penglibatan kumpulan berfungsi
seperti amina, alkana, asid dan alkena daripada dinding sel bakteria
yang membolehkan pelekatan permukaan nanozarah pada sel bakteria. Oleh itu,
kajian ini menunjukkan dengan jelas kesensitifan P. vulgaris terhadap
ZnO NP.
Kata kunci: Kesensitifan;
nanozarah zink oksida; Proteus vulgaris; sifat antibakteria; tekanan
oksidatif
REFERENCES
Agarwal, H., Menon, S., Kumar, S.V. & Rajeshkumar, S. 2018.
Mechanism study on antibacterial action of zinc oxide nanoparticles synthesized
using green route. Chemico-Biological
Interactions 286: 60-70.
Akbar, A., Sadiq, M.B., Ali, I., Muhammad, N., Rehman, Z., Khan,
M.N., Muhammad, J., Khan, S.A., Rehman, F.U. & Anal, A.K. 2019. Synthesis
and antimicrobial activity of zinc oxide nanoparticles against foodborne
pathogens Salmonella typhimurium and Staphylococcus aureus. Biocatalysis and Agricultural Biotechnology 17: 36-42.
Djearamane, S., Wong, L.S., Lim, Y.M. & Lee, P.F. 2020.
Oxidative stress effects of zinc oxide nanoparticles on fresh water microalga Haematococcus pluivalis. Ecology,
Environment and Conservation 26(2): 663-668.
Djearamane, S., Lim, Y.M., Wong, L.S. & Lee, P.F. 2019. Cellular accumulation and
cytotoxic effects of zinc oxide nanoparticles in microalga Haematococcus pluvialis. PeerJ 7: e7582.
Drummen, G.P., van Liebergen, L.C.M., den Kamp, J.A.F.O. &
Post, J.A. 2002. C11-BODIPY (581/591), an oxidation-sensitive fluorescent lipid
peroxidation probe: (micro) spectroscopic characterization and validation of
methodology. Free Radical Biology and
Medicine 33(4): 473-490.
Dutta, R.K., Nenavathu, B.P., Gangishetty, M.K. & Reddy,
A.V.R. 2012. Studies on antibacterial activity of ZnO nanoparticles by ROS
induced lipid peroxidation. Colloids and
Surfaces B: Biointerfaces 94: 143-150.
Elshama, S.S., Abdallah,
M.E. & Abdel-Karim, R.I. 2018. Zinc oxide nanoparticles: Therapeutic benefits and toxicological
hazards. The Open Nanomedicine Journal 5: 16-22.
Gupta, A., Mumtaz, S., Li, C.H., Hussain, I. & Rotelo, V.M.
2019. Combatting antibiotics-resistant bacteria using nanomaterial. Chemical Society Reviews 48(2): 415-427.
Iswarya, R., Vaseeharan, B., Kalyani, S., Banumathi, B.,
Govindarajan, M., Alharbi, N.S., Kadaikunnan, S., Al-Anbr, M.N., Khaled, J.M.
& Benelli, G. 2018. Facile green synthesis of zinc oxide nanoparticles
using Ulva lactuca seaweed extract
and evaluation of their photocatalytic, antibiofilm and insecticidal activity. Journal of Photochemistry and Photobiology,
B: Biology 178: 249-258.
Khezerlou, A., Alizadeh-Sani, M., Azizi-Lalabadi, M. & Ehsani,
A. 2018.
Nanoparticles and their antimicrobial properties against pathogens including
bacteria, fungi, parasites and viruses. Microbial
Pathogenesis 123: 505-526.
Kumar, A., Pandey, A.K., Singh, S.S., Shanker, R. & Dhawan, A.
2011. Engineered ZnO and TiO2 nanoparticles induce oxidative stress
and DNA damage leading to reduced viability of Escherichia coli. Free
Radical Biology and Medicine 51(10): 1872-1881.
Kumar, V.V. & Anthony, S.P. 2016. Antimicrobial studies of
metal and metal oxide nanoparticles. In Surface
Chemistry of Nanobiomaterials: Application of Nanobiomaterials Volume 3, edited by Grumezescu,
A.M. Kidlington, Oxford: Elsevier Inc. pp. 265-300.
Liang, S.X.T., Wong, L.S., Lim, Y.M., Lee, P.F. & Djearamane,
S. 2020. Effects of zinc oxide nanoparticles on Streptococcus pyogenes. South
African Journal of Chemical Engineering 34: 63-71.
Manyasree, D., Kiranmayi, P. & Kolli, V.R. 2018.
Characterization and antibacterial activity of ZnO nanoparticles synthesized by
co precipitation method. International
Journal of Applied Pharmaceutics 10(6): 224-228.
Mirzaei, H. & Darroudi, M. 2017. Zinc oxide
nanoparticles: Biological synthesis and biomedical applications. Ceramics International 43(1): 907-914.
Mishra, P.K., Mishra, H., Ekielski, A., Talegaonkar, S. &
Vaidya, B. 2017. Zinc oxide nanoparticles: A promising nanomaterial for
biomedical applications. Drug Discovery
Today 22(12): 1825-1834.
Raghupathi, K.R., Koodali, R.T. & Manna, A.C. 2011.
Size-dependent bacterial growth inhibition and mechanism of antibacterial
activity of zinc oxide nanoparticles. Langmuir 27(7): 4020-4028.
Ranjbar-Omid, M., Arzanlou, M., Amani, M., Al-Hashem, S.K.S.,
Mozafari, N.A. & Doghaheh, H.P. 2015. Allicin from garlic inhibits the
biofilm formation and urease activity of Proteus
mirabilis in vitro. FEMS Microbiology Letters 362(9): fnv049.
Reiniers, M.J., van Golen, R.F., Bonnet, S., Broekgaarden, M., van
Gulik, T.M., Egmond, M.R. & Heger, M. 2017. Preparation and practical
applications of 2’,7’-Dichlorofluoresceinin redox assays. Analytical Chemistry 87(7): 3853-3857.
Silverstein, R.M., Bassler, G.C. & Morrill, T.C. 1981. Spectrometric Identification of Organic Compounds. 4th ed. New York: John Wiley and
Sons.
Sirelkhatim, A., Mahmud, S., Seeni, A., Kaus, N.H.M., Ann, L.C.,
Bakhori, S.K.M., Hasan, H. & Mohamad, D. 2015. Review on zinc oxide
nanoparticles: Antibacterial
activity and toxicity mechanism. Nano-Micro
Letters 7(3): 219-242.
University of Colorado. 2011a. IR spectroscopy tutorial: Amines.
https://www.orgchemboulder.com/Spectroscopy/irtutor/aminesir.shtml. Accessed on
27 April 2021.
University of Colorado. 2011b. IR spectroscopy tutorial: Alkenes. https://orgchemboulder.com/Spectroscopy/irtutor/alkenesir.shtml.
Accessed on 27 April 2021.
Varadavenkatesan, T., Lyubchik, E., Pai, S., Pugazhendhi, A.,
Vinayagam, R. & Selvaraj, R. 2019. Photocatalytic degradation of Rhodamine
B by zinc oxide nanoparticles synthesized using the leaf extract of Cyanometra ramiflora. Journal of Photochemistry and Photobiology
B: Biology 119: 111621.
von Moos, N. & Slaveykova, V.I. 2014. Oxidative stress induced
by inorganic nanoparticles in abteria and aquatic microalgae-state of the art
and knowledge gaps. Nanotoxicology 8(6): 605-630.
*Corresponding
author; email: sinouvassane@utar.edu.my
|