Sains Malaysiana 51(5)(2022): 1385-1398
http://doi.org/10.17576/jsm-2022-5105-10
Effect of Different Metal Modified
Dolomite Catalysts on Catalytic Glycerol Hydrogenolysis towards 1,2-Propanediol
(Kesan Mangkin Dolomit Logam Terubah Suai ke atas Tindakan Pemangkinan Hidrogenolisis Gliserol terhadap 1,2-Propanadiol)
NORSAHIDA AZRI1,2, RAMLI IRMAWATI1,4,*, USMAN IDRIS NDA-UMAR1,3, MOHD IZHAM SAIMAN1,2 & YUN HIN TAUFIQ-YAP1,2,5
1Department
of Chemistry, Faculty of Science, Universiti Putra Malaysia, 43400
UPM Serdang, Selangor Darul Ehsan, Malaysia
2Catalysis Science and Technology Research Centre (PutraCat), Faculty
of Science, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor Darul Ehsan, Malaysia
3Department of Chemical Sciences, Federal Polytechnic, PMB 55, Bida, Niger
State, Nigeria
4Laboratory of Processing and Product
Development, Institute of
Plantation Studies, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor Darul Ehsan, Malaysia
5Faculty of Science
and Natural Resources, Universiti Malaysia Sabah, 88400 Kota Kinabalu, Sabah, Malaysia
Received: 28 April 2021/Accepted: 21 September 2021
Abstract
A series of metal modified dolomite catalysts (10%Ni-20%Cu/Dol, 10%Co-20%Cu/Dol,
10%Fe-20%Cu/Dol, 10%Zn-20%Cu/DolNi)
were synthesized via method of impregnation, later calcined at 500 ℃ and reduced by 5%H2 at 600 ℃. Those catalysts were formerly tested for their physico-chemical properties by BET,
BJH, XRD, H2-TPR, NH3–TPD, CO2-TPD and SEM, and followed by evaluation in catalytic performance of
glycerol hydrogenolysis to 1,2-propanediol
(1,2-PDO). Among the examined catalysts, 10%Ni-20%Cu/Dol showed optimum hydrogenolysis activity owing to the good copper-nickel-dolomite interaction. The outcomes from the
characterizations disclosed that the presence of nickel-copper species which
principally enriched on dolomite surface thereby enhanced the properties of the
catalyst in terms of good metal reducibility along with the presence of
adequate catalyst acidity. All the good features of 10%Ni-20%Cu/Dolcatalyst added to its high
activity with 83.5% glycerol conversion (GC) and 75% 1,2-PDO with low methanol
as side reaction product under
200 ℃, 4 MPa H2 and 10 h duration test, 1 g catalyst dosage
and 20 wt% glycerol concentration.
Keywords: Acidity; dolomite; hydrogenolysis;
modified catalyst; 1,2-propanediol
Abstrak
Satu siri mangkin terubah suai dolomit (10%Ni-20%Cu/Dol, 10%Co-20%Cu/Dol,
10%Fe-20%Cu/Dol, 10%Zn-20%Cu/DolNi) telah disintesismenggunakan kaedahpemadatan lalu dikalsinkan pada 500 ℃ dan diturunkan ke5%H2 pada 600 ℃. Sifat fiziko-kimia mangkin telah dikaji dengan menggunakan pelbagaikaedah analisis termasukBET, BJH, XRD, H2-TPR, NH3-TPD, CO2-TPD dan SEM dan kemudian diuji dalam hidrogenolisis gliserol terhadap 1,2-propanadiol dalam tindak balas akues. Antara mangkin yang diuji,
10%Ni-20%Cu/Dolmenunjukkan hasil hidrogenolisis yang optimum, yang didorongoleh interaksi baik antara nikel-kuprum-dolomit. Hasil pencirian mangkin menunjukkan bahawa kehadiran nikel-kuprum spesies pada permukaan dolomit dan ini membantu sifat mangkinan seperti penurunan logam yang baik dan kehadiran kapasiti asid mangkin yang sesuai. Kesemua sifat mangkin10%Ni-20%Cu/Doltelah membantu dalam kecemerlangan pemangkinan dengan penurunan gliserol dan pemilihan terhadap 1,2-PDO yang terbaik dengan masing-masing 83.5 and 75%
pada suhu tindak balas 200 ℃, tekanan hidrogen 4 MPa, masa tindak balas 10 jam, kepekatan gliserol 20 bt% dan berat mangkin 1 g.
Kata kunci: Asiditi; dolomit; hidrogenolisis; mangkin terubah suai; 1,2-propanadiol
References
Asikin-Mijan, N., Lee, H.V., Juan, J.C., Noorsaadah,
A.R. & Taufiq-Yap, Y.H. 2017. Catalytic deoxygenation of triglycerides to
green diesel over modified CaO-based catalysts. RSC
Advances 7(73): 46445-46460.
Azri, N.,
Ramli, I., Nda-Umar, U.I., Shamsuddin, M.R., Saiman, M.I. & Taufiq-Yap. Y.H. 2020. Copper-dolomite
as effective catalyst for glycerol hydrogenolysis to 1,2-propanediol. Journal of the Taiwan
Institute of Chemical Engineers 112: 34-51.
Bagheri, S., Muhd, N. & Yehye, W.A. 2015.
Catalytic conversion of biodiesel derived raw glycerol to value added products. Renewable and Sustainable Energy Reviews 41: 113-127.
Balaraju, M., Rekha, V., Prasad,
P.S.S., Devi, B.L.A.P., Prasad, R.B.N. & Lingaiah, N. 2009. Influence of
solid acids as co-catalysts on glycerol hydrogenolysis to propylene glycol over
Ru/C catalysts. Applied Catalysis A: General 354(1-2): 82-87.
Freitas, I.C., Manfro, R.L. & Souza, M.M.V.M. 2018. Hydrogenolysis of
glycerol to propylene glycol in continuous system without hydrogen addition
over Cu-Ni catalysts. Applied Catalysis B: Environmental 220: 31-41.
Gallegos-Suarez, E., Guerrero-Ruiz, A., Rodriguez-Ramos, I. & Arcoya, A. 2015. Comparative study of the hydrogenolysis of
glycerol over Ru-based catalysts supported on activated carbon, graphite,
carbon nanotubes and KL-zeolite. Chemical Engineering Journal 262: 326-333.
Gandarias, I., Requies,
J., Arias, P.L, Armbruster, U. & Martin, A. 2012. Liquid-phase glycerol
hydrogenolysis by formic acid over Ni–Cu/Al2O3 catalysts. Journal of Catalysis 290: 79-89.
Jiang,
T., Kong, D., Xu, K. & Cao, F. 2016. Hydrogenolysis of glycerol aqueous
solution to glycols over Ni–Co bimetallic catalyst: Effect of
ceria promoting. Applied Petrochemical Research 6(2): 135-144.
Karelovic, A. & Ruiz, P. 2015. The
role of copper particle size in low pressure methanol synthesis via CO2 hydrogenation over Cu/ZnO catalysts. Catalysis
Science & Technology 5(2): 869-881.
Kovanda, F., Jiratova,
K., Rymes, J. & Kolousek,
D. 2001. Characterization of activated Cu/Mg/Al hydrotalcites and their
catalytic activity in toluene combustion. Applied Clay Science 18(1-2):
71-80.
Li, Y., Guo, Y. & Xue, B. 2009. Catalytic combustion of methane over M (Ni,
Co, Cu) supported on ceria-magnesia. Fuel Processing Technology 90(5):
652-656.
Luna, F.M.T., Cecilia, J.A., Saboya, R.M.A., Barrera, D., Sapag,
K., Rodríguez-Castellón, E. & Calvancante Jr., C.L. 2018. Natural and modified montmorillonite clays as catalysts for
synthesis of biolubricants. Materials 11(9): 1764.
Mallesham, B., Sudarsanam,
P., Reddy, B.V.S. & Reddy, B.M. 2016. Development of cerium promoted copper
– magnesium catalysts for biomass valorization: Selective
hydrogenolysis of bioglycerol. Applied Catalysis
B: Environmental 181: 47-57.
Nagaraja,
B.M.P., Seetharamulu, A.H., Reddy, P.K.H.P., Raju,
B.D. & Rao, K.S.R. 2007. A highly active Cu-MgO-Cr2O3 catalyst for simultaneous synthesis of furfuryl alcohol and cyclohexanone by a
novel coupling route - combination of furfural hydrogenation and
cyclohexanol dehydrogenation. Journal of Molecular Catalysis A: Chemical 278(1-2): 29-37.
Pandhare, N.N., Pudi,
S.M., Biswas, P. & Sinha, S. 2016. Vapor phase hydrogenolysis of glycerol
to 1, 2-propanediol over γ-Al2O3 supported copper or
nickel monometallic and copper-nickel bimetallic catalysts. Journal
of the Taiwan Institute of Chemical Engineers 61: 90-96.
Pardeshi, S.K. & Pawar, R.Y. 2010.
Optimization of reaction conditions in selective oxidation of styrene over fine
crystallite spinel-type CaFe2O4 complex oxide catalyst. Materials
Research Bulletin 45(5): 609-615.
Priya,
S.S., Selvakannan, P.R., Chary, K.V.R., Kantam, M.L. & Bhargava, S.K. 2017. Solvent-free
microwave-assisted synthesis of solketal from
glycerol using transition metal ions promoted mordenite solid acid catalysts. Molecular
Catalysis 434: 184-193.
Pudi, S.M., Biswa,
P., Kumar, S. & Sarkar, B. 2015. Selective hydrogenolysis of glycerol to
1,2 propanediol over bimetallic Cu-Ni catalysts supported on γ-Al2O3. Journal of the Brazilian Chemical Society 268(8): 1551-1564.
Putrakumar, B., Nagaraju,
N., Kumar, V.P. & Chary, K.V.R. 2015. Hydrogenation of levulinic acid to valerolactone over copper catalysts supported
on Al2O3. Catalysis Today 250: 209-217.
Rahman, N., Ramli, A., Jumbri, K. & Uemura, Y.
2019. Tailoring the
surface area and the acid-base properties of ZrO2 for biodiesel production from Nannochloropsis sp. Scientific Reports9: 16223.
Rajkhowa, T., Marin, G.B. & Thybaut, J.W. 2017. A comprehensive kinetic model for Cu
catalyzed liquid phase glycerol hydrogenolysis. Applied Catalysis B:
Environmental 205: 469-480.
Soares, A.V.H., Perez, G.
& Passos, F.B. 2016a. Alumina supported
bimetallic Pt–Fe catalysts applied to glycerol hydrogenolysis and aqueous phase
reforming. Applied Catalysis B: Environmental 185: 77-87.
Soares, A.V.H.,
Salazar, J.B., Falcone, D.D., Vasconcellos, F.A., Davis, R.J. & Passos, F.B.A. 2016b. Study of glycerol hydrogenolysis over
Ru–Cu/Al2O3 and Ru–Cu/ZrO2 catalysts. Journal
of Molecular Catalysis A: Chemical 415: 27-36.
Srivastava, S., Jadeja, G.C.
& Parikh, J. 2017. Synergism
studies on alumina-supported copper nickel catalysts towards furfural and
5-hydroxymethylfurfural hydrogenation. Journal of Molecular Catalysis A:
Chemical 426: 244-256.
Tanasoi, S., Tanchoux,
N., Adriana, U., Tichit, D., Sandulescu,
I., Fajula, F. & Marcu,
I.C. 2009. New Cu-based mixed oxides obtained from LDH precursors, catalysts
for methane total oxidation. Applied Catalysis A: General 363(1-2): 135-142.
Tasyurek, K.C., Bugdayci, M. & Yucel, O. 2018. Reduction conditions of metallic calcium
from magnesium production residues. Metals 8(383): 1-14.
Thirupathi, B. & Smirniotis, P.G. 2012.
Nickel-doped Mn/TiO2 as an efficient catalyst for the
low-temperature SCR of NO with NH3: Catalytic evaluation and characterizations. Journal
of Catalysis 288: 74-83.
Vargas-Hernández, D.,
Rubio-Caballero, J.M., Santamaría-González, J.,
Moreno-Tost, R., Mérida Robles, J.M., Pérez-Cruz,
M.A., Jiménez-López, A., Hernández-Huesca, R. & Maireles-Torres,
P. 2014. Furfuryl alcohol from furfural hydrogenation over copper supported on
SBA-15 silica catalysts. Journal of Molecular Catalysis A: Chemical 383-384: 106-113.
Vasiliadou, E.S. & Lemonidou, A.A. 2011. Investigating the performance and
deactivation behaviour of silica-supported copper
catalysts in glycerol hydrogenolysis. Applied Catalysis A: General 396(1-2): 177-185.
Wen, C., Yin, A., Cui, Y., Yang, X., Dai, W.L. & Fan, K. 2013. Enhanced
catalytic performance for SiO2-TiO2 binary oxide supported Cu-based catalyst in the hydrogenation of dimethyloxalate. Applied Catalysis A: General 458:
82-89.
Xia, S., Yuan, Z., Wang, L., Chen, P. & Hou, Z. 2011.
Hydrogenolysis of glycerol on bimetallic Pd-Cu/solid-base catalysts prepared
via layered double hydroxides precursors. Applied Catalysis A: General 403: 173-182.
Yu, W., Zhao, J., Ma, H., Miao, H., Song, Q.
& Xu, J. 2010. Aqueous hydrogenolysis of glycerol over Ni-Ce/AC catalyst: Promoting effect of Ce on catalytic performance. Applied Catalysis A:
General 383: 73-78.
Zhao, F., Li, S., Wu, X., Yue, R., Li, W., Zha, X., Deng, Y. & Chen, Y. 2019. Catalytic behaviour
of flame-made CuO-CeO2 nanocatalysts in
efficient Co oxidation. Catalyst 9(3): 256.
Zhao, S., Yue, H., Zhao, Y.,
Wang, B., Geng, Y., Jing, Lv., Wang, S., Gong, J.
& Ma, X. 2013. Chemoselective synthesis of
ethanol via hydrogenation of dimethyl oxalate on Cu/SiO2: Enhanced stability with boron dopant. Journal of Catalysis 297: 142-150.
Zheng, L., Xia, S. & Hou, Z. 2015. Hydrogenolysis of glycerol over Cu-substituted
hydrocalumite mediated catalysts. Applied Clay Science 118: 68-73.
Zhu, S., Gao, X., Zhu, Y., Zheng, H. & Li, Y. 2013. Promoting
effect of boron oxide on Cu/SiO2 catalyst for glycerol
hydrogenolysis to 1,2-propanediol. Journal of Catalysis 303: 70-79.
*Corresponding author; email:
irmawati@upm.edu.my
|