Sains Malaysiana 51(5)(2022): 1385-1398

http://doi.org/10.17576/jsm-2022-5105-10

 

Effect of Different Metal Modified Dolomite Catalysts on Catalytic Glycerol Hydrogenolysis towards 1,2-Propanediol

(Kesan Mangkin Dolomit Logam Terubah Suai ke atas Tindakan Pemangkinan Hidrogenolisis Gliserol terhadap 1,2-Propanadiol)

 

NORSAHIDA AZRI1,2, RAMLI IRMAWATI1,4,*, USMAN IDRIS NDA-UMAR1,3, MOHD IZHAM SAIMAN1,2 & YUN HIN TAUFIQ-YAP1,2,5

 

1Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor Darul Ehsan, Malaysia

2Catalysis Science and Technology Research Centre (PutraCat), Faculty of Science, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor Darul Ehsan, Malaysia

3Department of Chemical Sciences, Federal Polytechnic, PMB 55, Bida, Niger State, Nigeria

4Laboratory of Processing and Product Development, Institute of Plantation Studies, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor Darul Ehsan, Malaysia

5Faculty of Science and Natural Resources, Universiti Malaysia Sabah, 88400 Kota Kinabalu, Sabah, Malaysia

 

Received: 28 April 2021/Accepted: 21 September 2021

 

Abstract

A series of metal modified dolomite catalysts (10%Ni-20%Cu/Dol, 10%Co-20%Cu/Dol, 10%Fe-20%Cu/Dol, 10%Zn-20%Cu/DolNi) were synthesized via method of impregnation, later calcined at 500 ℃ and reduced by 5%H2 at 600 ℃. Those catalysts were formerly tested for their physico-chemical properties by BET, BJH, XRD, H2-TPR, NH3–TPD, CO2-TPD and SEM, and followed by evaluation in catalytic performance of glycerol hydrogenolysis to 1,2-propanediol (1,2-PDO). Among the examined catalysts, 10%Ni-20%Cu/Dol showed optimum hydrogenolysis activity owing to the good copper-nickel-dolomite interaction. The outcomes from the characterizations disclosed that the presence of nickel-copper species which principally enriched on dolomite surface thereby enhanced the properties of the catalyst in terms of good metal reducibility along with the presence of adequate catalyst acidity. All the good features of 10%Ni-20%Cu/Dolcatalyst added to its high activity with 83.5% glycerol conversion (GC) and 75% 1,2-PDO with low methanol as side reaction product under 200 ℃, 4 MPa H2 and 10 h duration test, 1 g catalyst dosage and 20 wt% glycerol concentration.

 

Keywords: Acidity; dolomite; hydrogenolysis; modified catalyst; 1,2-propanediol

 

Abstrak

Satu siri mangkin terubah suai dolomit (10%Ni-20%Cu/Dol, 10%Co-20%Cu/Dol, 10%Fe-20%Cu/Dol, 10%Zn-20%Cu/DolNi) telah disintesismenggunakan kaedahpemadatan lalu dikalsinkan pada 500 ℃ dan diturunkan ke5%H2 pada 600 ℃. Sifat fiziko-kimia mangkin telah dikaji dengan menggunakan pelbagaikaedah analisis termasukBET, BJH, XRD, H2-TPR, NH3-TPD, CO2-TPD dan SEM dan kemudian diuji dalam hidrogenolisis gliserol terhadap 1,2-propanadiol dalam tindak balas akues. Antara mangkin yang diuji, 10%Ni-20%Cu/Dolmenunjukkan hasil hidrogenolisis yang optimum, yang didorongoleh interaksi baik antara nikel-kuprum-dolomit. Hasil pencirian mangkin menunjukkan bahawa kehadiran nikel-kuprum spesies pada permukaan dolomit dan ini membantu sifat mangkinan seperti penurunan logam yang baik dan kehadiran kapasiti asid mangkin yang sesuai. Kesemua sifat mangkin10%Ni-20%Cu/Doltelah membantu dalam kecemerlangan pemangkinan dengan penurunan gliserol dan pemilihan terhadap 1,2-PDO yang terbaik dengan masing-masing 83.5 and 75% pada suhu tindak balas 200 , tekanan hidrogen 4 MPa, masa tindak balas 10 jam, kepekatan gliserol 20 bt% dan berat mangkin 1 g.

 

Kata kunci: Asiditi; dolomit; hidrogenolisis; mangkin terubah suai; 1,2-propanadiol

 

References

Asikin-Mijan, N., Lee, H.V., Juan, J.C., Noorsaadah, A.R. & Taufiq-Yap, Y.H. 2017. Catalytic deoxygenation of triglycerides to green diesel over modified CaO-based catalysts. RSC Advances 7(73): 46445-46460. 

Azri, N., Ramli, I., Nda-Umar, U.I., Shamsuddin, M.R., Saiman, M.I. & Taufiq-Yap. Y.H. 2020. Copper-dolomite as effective catalyst for glycerol hydrogenolysis to 1,2-propanediol. Journal of the Taiwan Institute of Chemical Engineers 112: 34-51.

Bagheri, S., Muhd, N. & Yehye, W.A. 2015. Catalytic conversion of biodiesel derived raw glycerol to value added products. Renewable and Sustainable Energy Reviews 41: 113-127.

Balaraju, M., Rekha, V., Prasad, P.S.S., Devi, B.L.A.P., Prasad, R.B.N. & Lingaiah, N. 2009. Influence of solid acids as co-catalysts on glycerol hydrogenolysis to propylene glycol over Ru/C catalysts. Applied Catalysis A: General 354(1-2): 82-87.

Freitas, I.C., Manfro, R.L. & Souza, M.M.V.M. 2018. Hydrogenolysis of glycerol to propylene glycol in continuous system without hydrogen addition over Cu-Ni catalysts. Applied Catalysis B: Environmental 220: 31-41.

Gallegos-Suarez, E., Guerrero-Ruiz, A., Rodriguez-Ramos, I. & Arcoya, A. 2015. Comparative study of the hydrogenolysis of glycerol over Ru-based catalysts supported on activated carbon, graphite, carbon nanotubes and KL-zeolite. Chemical Engineering Journal 262: 326-333.

Gandarias, I., Requies, J., Arias, P.L, Armbruster, U. & Martin, A. 2012. Liquid-phase glycerol hydrogenolysis by formic acid over Ni–Cu/Al2O3 catalysts. Journal of Catalysis 290: 79-89.

Jiang, T., Kong, D., Xu, K. & Cao, F. 2016. Hydrogenolysis of glycerol aqueous solution to glycols over Ni–Co bimetallic catalyst: Effect of ceria promoting. Applied Petrochemical Research 6(2): 135-144.

Karelovic, A. & Ruiz, P. 2015. The role of copper particle size in low pressure methanol synthesis via CO2 hydrogenation over Cu/ZnO catalysts. Catalysis Science & Technology 5(2): 869-881.

Kovanda, F., Jiratova, K., Rymes, J. & Kolousek, D. 2001. Characterization of activated Cu/Mg/Al hydrotalcites and their catalytic activity in toluene combustion. Applied Clay Science 18(1-2): 71-80.

Li, Y., Guo, Y. & Xue, B. 2009. Catalytic combustion of methane over M (Ni, Co, Cu) supported on ceria-magnesia. Fuel Processing Technology 90(5): 652-656.

Luna, F.M.T., Cecilia, J.A., Saboya, R.M.A., Barrera, D., Sapag, K., Rodríguez-Castellón, E. & Calvancante Jr., C.L. 2018. Natural and modified montmorillonite clays as catalysts for synthesis of biolubricants. Materials 11(9): 1764.

Mallesham, B., Sudarsanam, P., Reddy, B.V.S. & Reddy, B.M. 2016. Development of cerium promoted copper – magnesium catalysts for biomass valorization: Selective hydrogenolysis of bioglycerol. Applied Catalysis B: Environmental 181: 47-57.

Nagaraja, B.M.P., Seetharamulu, A.H., Reddy, P.K.H.P., Raju, B.D. & Rao, K.S.R. 2007. A highly active Cu-MgO-Cr2O3 catalyst for simultaneous synthesis of furfuryl alcohol and cyclohexanone by a novel coupling route - combination of furfural hydrogenation and cyclohexanol dehydrogenation. Journal of Molecular Catalysis A: Chemical 278(1-2): 29-37.

Pandhare, N.N., Pudi, S.M., Biswas, P. & Sinha, S. 2016. Vapor phase hydrogenolysis of glycerol to 1, 2-propanediol over γ-Al2O3 supported copper or nickel monometallic and copper-nickel bimetallic catalysts. Journal of the Taiwan Institute of Chemical Engineers 61: 90-96.

Pardeshi, S.K. & Pawar, R.Y. 2010. Optimization of reaction conditions in selective oxidation of styrene over fine crystallite spinel-type CaFe2O4 complex oxide catalyst. Materials Research Bulletin 45(5): 609-615.

Priya, S.S., Selvakannan, P.R., Chary, K.V.R., Kantam, M.L. & Bhargava, S.K. 2017. Solvent-free microwave-assisted synthesis of solketal from glycerol using transition metal ions promoted mordenite solid acid catalysts. Molecular Catalysis 434: 184-193.

Pudi, S.M., Biswa, P., Kumar, S. & Sarkar, B. 2015. Selective hydrogenolysis of glycerol to 1,2 propanediol over bimetallic Cu-Ni catalysts supported on γ-Al2O3. Journal of the Brazilian Chemical Society 268(8): 1551-1564.

Putrakumar, B., Nagaraju, N., Kumar, V.P. & Chary, K.V.R. 2015. Hydrogenation of levulinic acid to valerolactone over copper catalysts supported on Al2O3. Catalysis Today 250: 209-217.

Rahman, N., Ramli, A., Jumbri, K. & Uemura, Y. 2019. Tailoring the surface area and the acid-base properties of ZrO2 for biodiesel production from Nannochloropsis sp. Scientific Reports9: 16223.

Rajkhowa, T., Marin, G.B. & Thybaut, J.W. 2017. A comprehensive kinetic model for Cu catalyzed liquid phase glycerol hydrogenolysis. Applied Catalysis B: Environmental 205: 469-480.

Soares, A.V.H., Perez, G. & Passos, F.B. 2016a. Alumina supported bimetallic Pt–Fe catalysts applied to glycerol hydrogenolysis and aqueous phase reforming. Applied Catalysis B: Environmental 185: 77-87.

Soares, A.V.H., Salazar, J.B., Falcone, D.D., Vasconcellos, F.A., Davis, R.J. & Passos, F.B.A. 2016b. Study of glycerol hydrogenolysis over Ru–Cu/Al2O3 and Ru–Cu/ZrO2 catalysts. Journal of Molecular Catalysis A: Chemical 415: 27-36.

Srivastava, S., Jadeja, G.C. & Parikh, J. 2017. Synergism studies on alumina-supported copper nickel catalysts towards furfural and 5-hydroxymethylfurfural hydrogenation. Journal of Molecular Catalysis A: Chemical 426: 244-256.

Tanasoi, S., Tanchoux, N., Adriana, U., Tichit, D., Sandulescu, I., Fajula, F. & Marcu, I.C. 2009. New Cu-based mixed oxides obtained from LDH precursors, catalysts for methane total oxidation. Applied Catalysis A: General 363(1-2): 135-142. 

Tasyurek, K.C., Bugdayci, M. & Yucel, O. 2018. Reduction conditions of metallic calcium from magnesium production residues. Metals 8(383): 1-14.

Thirupathi, B. & Smirniotis, P.G. 2012. Nickel-doped Mn/TiO2 as an efficient catalyst for the low-temperature SCR of NO with NH3: Catalytic evaluation and characterizations. Journal of Catalysis 288: 74-83.

Vargas-Hernández, D., Rubio-Caballero, J.M., Santamaría-González, J., Moreno-Tost, R., Mérida Robles, J.M., Pérez-Cruz, M.A., Jiménez-López, A., Hernández-Huesca, R. & Maireles-Torres, P. 2014. Furfuryl alcohol from furfural hydrogenation over copper supported on SBA-15 silica catalysts. Journal of Molecular Catalysis A: Chemical 383-384: 106-113.

Vasiliadou, E.S. & Lemonidou, A.A. 2011. Investigating the performance and deactivation behaviour of silica-supported copper catalysts in glycerol hydrogenolysis. Applied Catalysis A: General 396(1-2): 177-185.

Wen, C., Yin, A., Cui, Y., Yang, X., Dai, W.L. & Fan, K. 2013. Enhanced catalytic performance for SiO2-TiO2 binary oxide supported Cu-based catalyst in the hydrogenation of dimethyloxalate. Applied Catalysis A: General 458: 82-89.

Xia, S., Yuan, Z., Wang, L., Chen, P. & Hou, Z. 2011. Hydrogenolysis of glycerol on bimetallic Pd-Cu/solid-base catalysts prepared via layered double hydroxides precursors. Applied Catalysis A: General 403: 173-182.

Yu, W., Zhao, J., Ma, H., Miao, H., Song, Q. & Xu, J. 2010. Aqueous hydrogenolysis of glycerol over Ni-Ce/AC catalyst: Promoting effect of Ce on catalytic performance. Applied Catalysis A: General 383: 73-78.

Zhao, F., Li, S., Wu, X., Yue, R., Li, W., Zha, X., Deng, Y. & Chen, Y. 2019. Catalytic behaviour of flame-made CuO-CeO2 nanocatalysts in efficient Co oxidation. Catalyst 9(3): 256.

Zhao, S., Yue, H., Zhao, Y., Wang, B., Geng, Y., Jing, Lv., Wang, S., Gong, J. & Ma, X. 2013. Chemoselective synthesis of ethanol via hydrogenation of dimethyl oxalate on Cu/SiO2: Enhanced stability with boron dopant. Journal of Catalysis 297: 142-150.

Zheng, L., Xia, S. & Hou, Z. 2015. Hydrogenolysis of glycerol over Cu-substituted hydrocalumite mediated catalysts. Applied Clay Science 118: 68-73.

Zhu, S., Gao, X., Zhu, Y., Zheng, H. & Li, Y. 2013. Promoting effect of boron oxide on Cu/SiO2 catalyst for glycerol hydrogenolysis to 1,2-propanediol. Journal of Catalysis 303: 70-79.

 

*Corresponding author; email: irmawati@upm.edu.my

 

 

previous