Sains
Malaysiana 51(5)(2022): 1449-1464
http://doi.org/10.17576/jsm-2022-5105-15
Higher
Concentration of Ascorbic Acid as a Sole Induction Factor for Osteogenesis on
MC3T3-E1 Cell Model
(Kepekatan Tinggi Asid
Askorbik sebagai Faktor Aruhan Tunggal untuk Osteogenesis pada Model Sel MC3T3-E1)
FARINAWATI
YAZID1, WAN CHING NG2, NUR
ATMALIYA LUCHMAN2, SHAHRUL HISHAM ZAINAL ARIFFIN3 &
ROHAYA MEGAT ABDUL WAHAB2,*
1Discipline of Paediatric Dentistry,
Department of Family Oral Health, Universiti Kebangsaan Malaysia, Jalan Raja
Muda Aziz, 50300 Kuala Lumpur, Federal Territory, Malaysia
2Discipline of Orthodontics, Department of
Family Oral Health, Universiti Kebangsaan Malaysia, Jalan Raja Muda Aziz, 50300
Kuala Lumpur, Federal Territory, Malaysia
3Department of Biological Sciences and
Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan
Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia
Received: 31 March 2021/Accepted: 4 October 2021
Abstract
This
research aimed to investigate the potential of ascorbic acid (Asc) to act
independently as an osteogenic induction factor in a murine pre-osteoblast
(MC3T3-E1) model. MC3T3-E1 cells were seeded in culture wells and
hydroxyapatite scaffold for two-dimensional and three-dimensional analyses
respectively. Cell morphology, viability, osteoblast differentiation, and
mineralisation potentials of MC3T3-E1 cells were compared between induction of
standard (50 µg/mL) and doubled (100 µg/mL) Asc concentrations in growth media.
Cells with fibroblast-like morphology became confluent earlier on day 6 in the
standard group compared to the doubled group on day 9. Cell viability and
differentiation potential were significantly increased in the doubled group (p < 0.01). Mineralisation occurred in
the doubled group after 15 days of seeding but no mineralisation was seen in
the standard group. Findings were similar in 3D analysis whereby mineralized
nodules were seen only in the doubled group. The relative expression of
collagen 1(α) and osteocalcin genes were increased in the doubled group
than the standard group. Doubling Asc concentration in a
growth medium to 100 µg/mL can induce viability, differentiation, and
mineralisation of MC3T3-E1 cells. Thus, higher
concentration of ascorbic acid can potentially be used as the sole induction
factor in osteogenic medium.
Keywords: Ascorbic acid; growth media; MC3T3-E1
cells; osteogenic differentiation; sole induction
Abstrak
Penyelidikan ini bertujuan untuk mengkaji potensi
asid askorbik (Asc) bagi tindak balas secara bebas sebagai faktor induksi
osteogenik dalam model pra-osteoblas murine (MC3T3-E1). Sel MC3T3-E1 dibenihkan
dalam telaga kultur dan perancah hidroksi apatit untuk analisa dua dimensi dan
tiga dimensi. Morfologi sel, kebolehidupan sel, pembezaan osteoblas dan potensi
pemineralan sel MC3T3-E1 dibandingkan antara induksi kepekatan piawai (50
µg/mL) dan kumpulan dua kali ganda (100 µg/mL) kepekatan asid askorbik di dalam
media pertumbuhan. Sel dengan morfologi seperti fibroblas menjadi konfluensi
pada hari ke 6 dalam kumpulan piawai berbanding kumpulan dua kali ganda pada
hari ke 9. Kebolehidupan sel dan potensi pembezaan meningkat dengan ketara pada
kumpulan dua kali ganda (p <
0.01). Pemineralan berlaku pada kumpulan yang berlipat ganda selepas 15 hari
pengkulturan tetapi tiada pemineralan dilihat pada kumpulan piawai. Penemuan
yang sama dilihat dalam analisis 3D manakala nodul mineral hanya dilihat pada
kumpulan dua kali ganda. Ekspresi relatif gen kolagen 1(α) dan osteokalsin
meningkat pada kumpulan dua kali ganda berbanding kumpulan piawai. Menggandakan
kepekatan asid askorbik dalam medium pertumbuhan hingga 100 µg/mL boleh
mengaruh keviabelan, pembezaan dan pemineralan sel MC3T3-E1. Oleh itu,
kepekatan asid askorbik yang lebih tinggi berpotensi digunakan sebagai faktor
induksi tunggal dalam medium osteogenik.
Kata
kunci: Aruhan tunggal; asid askorbik; media pertumbuhan; sel MC3T3-E1; pembezaan osteogenik
REFERENCES
Aghajanian, P.,
Hall, S., Wongworawat, M.D. & Mohan, S. 2015. The roles and mechanisms of
actions of vitamin C in bone: New
developments. J. Bone
Miner. Res. 30(11): 1945-1955.
Ariffin, S.H.Z.,
Manogaran, T., Abidin, I., Wahab, R.M.A. & Senafi, S. 2017. A perspective
on stem cells as biological systems that produce differentiated osteoblasts and
odontoblasts. Curr. Stem
Cell Res. Ther. 12(3): 247-259.
Chan, D., Lamande,
S.R., Cole, W.G. & Bateman, J.F. 1990. Regulation of procollagen synthesis
and processing during ascorbate-induced extracellular matrix accumulation in
vitro. The Biochemical Journal 269(1): 175-181.
Choi, J.Y., Lee,
B.H., Song, K.B., Park, R.W., Kim, I.S., Sohn, K.Y., Jo, S.J. & Ryoo, H.M.
1996. Expression patterns of bone-related proteins during osteoblastic
differentiation in MC3T3-E1 cells. J. Cell Biochem. 61(4): 609-618.
Cordonnier, T.,
Langonné, A., Corre, P., Renaud, A., Sensebé, L., Rosset, P., Layrolle, P.
& Sohier, J. 2014. Osteoblastic differentiation and potent osteogenicity of
three-dimensional hBMSC-BCP particle constructs. J. Tissue Eng. Regen. Med. 8(5): 364-376.
Czekanska, E.M.,
Stoddart, M.J., Richards, R.G. & Hayes, J.S. 2012. In search of an
osteoblast cell model for in vitro research. Eur. Cells Mater. 24: 1-17.
Farinawati, Y.,
Nur Atmaliya, L., Rohaya, M.A.W., Shahrul Hisham, Z.A. & Sahidan, S. 2018.
Proliferation and osteoblast differentiation mice dental pulp stem cells
between enzyme digestion and outgrowth method. Sains Malaysiana 47(4):
691-698.
Fernandes, G.,
Barone, A.W. & Dziak, R. 2017. The effect of ascorbic acid on bone cancer
cells in vitro. Cogent. Biol. 3(1): 1288335.
Finck, H., Hart,
A.R., Jennings, A. & Welch, A.A. 2014. Is there a role for vitamin C in
preventing osteoporosis and fractures? A review of the potential underlying mechanisms and current epidemiological
evidence. Nutr. Res. Rev. 27(2): 268-283.
Franceschi, R.T.
& Iyer, B.S. 1992. Relationship between collagen synthesis and expression
of the osteoblast phenotype in MC3T3‐E1 cells. J. Bone Miner. Res. 7(2):
235-246.
Franceschi, R.T.,
Iyer, B.S. & Cui, Y. 1994. Effects of ascorbic acid on collagen matrix
formation and osteoblast differentiation in murine MC3T3-E1 cells. J. Bone Miner. Res. 9(6):
843-854.
Fu, C., Yang, X.,
Tan, S. & Song, L. 2017. Enhancing cell proliferation and osteogenic
differentiation of MC3T3-E1 pre-osteoblasts by BMP-2 delivery in graphene
oxide-incorporated PLGA/HA biodegradable microcarriers. Sci. Rep. 7: 1-13.
Fujisawa, K.,
Hara, K., Takami, T., Okada, S., Matsumoto, T., Yamamoto, N. & Sakaida, I.
2018. Evaluation of the effects of ascorbic acid on metabolism of human
mesenchymal stem cells. Stem Cell
Research & Therapy 9: 93.
Gerard, C. &
Goldbeter, A. 2014. The balance between cell cycle arrest and cell
proliferation: Control by the
extracellular matrix and by contact inhibition. Interface Focus 4(3):
20130075-20130075.
Guo, J., Li, C.,
Zhang, Q., Wu, G., Deacon, S.A., Chen, J., Hu, H., Zou, S. & Ye, Q. 2011.
Secondary bone grafting for alveolar cleft in children with cleft lip or cleft
lip and palate. Cochrane Database Syst. Rev. (6):
CD008050.
Hadzir, S.N.,
Ibrahim, S.N., Wahab, R.M.A., Abidin, I.Z.Z., Senafi, S., Ariffin, Z.Z., Razak,
M.A. & Ariffin, S.H.Z. 2014. Ascorbic acid induces osteoblast
differentiation of human suspension mononuclear cells. Cytotherapy 16(5): 674-682.
Hammoudeh, J.A.,
Fahradyan, A., Gould, D.J., Liang, F., Imahiyerobo, T. & Urbinelli. 2017. A
comparative analysis of recombinant human bone morphogenetic protein-2 with a
demineralized bone matrix versus iliac crest bone graft for secondary alveolar
bone grafts in patients with cleft lip and palate: Review
of 501 cases. Plastic Reconstructive Surgery 140(2): 318e-325e.
Harada, S.I.,
Matsumoto, T. & Ogata, E. 1991 Role of ascorbic acid in the regulation of
proliferation in osteoblast‐like MC3T3‐El cells. J. Bone Miner. Res. 6(9):
903-908.
Hayrapetyan, A.,
Jansen, J.A. & Beucken, J.V.d. 2015. Signaling pathways involved in
osteogenesis and their application for bone regenerative medicine. Tissue
Eng. Part B Rev. 21(1):
75-87.
Hong, D., Chen,
H.X., Yu, H.Q., Liang, Y., Wang, C., Lian, Q.Q., Deng, H.T. & Ge, R.S. 2010. Morphological and proteomic analysis of
early stage of osteoblast differentiation in osteoblastic progenitor cells. Exp. Cell Res. 316(14): 2291-2300.
Jimi,
E., Hirata, S., Osawa, K., Terashita, M., Kitamura, C. & Fukushima, H.
2012. The current and future therapies of bone regeneration to repair bone
defects. Int. J. Dent. 2012:
148261.
Kodama, H.,
Amagai, Y., Sudo, H., Kasai, S. & Yamamoto, S. 1981. Establishment of a clonal osteogenic cell
line from newborn mouse calvaria. Jap. J. Oral
Biol. 23: 899-901.
Kuiper, C. &
Vissers, M.C.M. 2014. Ascorbate as a co-factor for Fe- and 2-oxoglutarate
dependent dioxygenases: Physiological
activity in tumor growth and progression. Frontiers
in Oncology 4: 359.
Kumar, P.,
Fathima, G. & Vinitha, B. 2013. Bone grafts in dentistry. J. Pharm. Bioallied Sci. 5(Suppl 1): S125-S127.
Langenbach, F.
& Handschel, J. 2013. Effects of dexamethasone, ascorbic acid and
β-glycerophosphate on the osteogenic differentiation of stem cells in
vitro. Stem Cell Res. Ther. 4(5): 117.
Livak, K.J. &
Schmittgen, T.D. 2001. Analysis of relative gene expression data using
real-time quantitative PCR and the 2(-delta delta C(T)) method. Methods 25(4): 402-408.
MacIsaac, Z.M.,
Rottgers, S.A., Davit, A.J., Ford, M., Losee, J.E. & Kumar, A.R. 2012.
Alveolar reconstruction in cleft patients: Decreased
morbidity and improved outcomes with supplemental demineralized bone matrix and
cancellous allograft. Plastic Reconstructive Surgery 130(3): 625-632.
Marsh, M.E.,
Munne, A.M., Vogel, J.J., Cui, Y. & Franceschi, R.T. 2009. Mineralization
of bone-like extracellular matrix in the absence of functional osteoblasts. J. Bone Miner. Res. 10(11): 1635-1643.
Matthews, B.G.,
Naot, D., Callon, K.E., Musson, D.S., Locklin, R., Hulley, P.A., Grey, A. &
Cornish, J. 2014. Enhanced osteoblastogenesis in three-dimensional collagen
gels. Bonekey Reports 3: 560.
Motamedian, S.,
Tabatabaei, F., Akhlaghi, F., Torshabi, M., Gholamin, P. & Khojasteh, A. 2016.
Response of dental pulp stem cells to synthetic, allograft, and xenograft bone
scaffolds. Int. J. Periodont. Rest. 37(1):
47-59.
Nawi, N.S.M.,
Ariffin, Z., Alam, M.K., Noor, F.M. &
Hassan, A. 2013. The assessment of proliferation rate of dental pulp stem cells
and stem cell from human exfoliated deciduous teeth by using two different
scaffolds. Int. Med. J. 20: 593-596.
Quarles, L.D.,
Yohay, D.A., Lever, L.W., Caton, R. & Wenstrup, R.J. 1992. Distinct
proliferative and differentiated stages of murine MC3T3‐E1 cells in
culture: An in vitro model of osteoblast
development. J. Bone
Miner. Res. 7(6): 683-692.
Roberts, T.T.
& Rosenbaum, A.J. 2012. Bone grafts, bone substitutes and orthobiologics. Organogenesis 8(4): 114-124.
Ruijtenberg, S.
& Heuvel, S.v.D. 2016 Coordinating cell proliferation and differentiation: Antagonism between cell cycle regulators
and cell type-specific gene expression. Cell Cycle 15(2): 196-212.
Seebach, C.,
Schultheiss, J., Wilhelm, K., Frank, J. & Henrich, D. 2010. Comparison of
six bone-graft substitutes regarding to cell seeding efficiency, metabolism,
and growth behaviour of human mesenchymal stem cells (MSC) in vitro. Injury 41(7): 731-738.
Shamsuddin,
S.A., Ramli, R., Razali, M., Baharin, B., Sulaiman, S., Hwei Ng, M., Low, C.K.,
Jabar, M.N.A., Nordin, R., Yahaya, N., Shukur, S.S.A., Siar, C.H. & Hj
Idrus, R. 2017. Guided bone regeneration using autologous plasma, bone marrow
cells and Β-TCP/HA granules for experimental alveolar ridge reconstruction
in Macaca fascicularis. J. Bio.mater. Tissue Eng. 7(2): 111-118.
Sudo, H., Kodama,
H.A., Amagai, Y., Yamamoto, S. & Kasai, S. 1983. In vitro differentiation
and calcification in a new clonal osteogenic cell line derived from newborn
mouse calvaria. J. Cell
Biol. 96(1): 191-198.
Vater, C., Kasten,
P. & Stiehler, M. 2011. Culture media for the differentiation of
mesenchymal stromal cells. Acta Biomater. 7(2): 463-477.
Wahab, R.M.A.,
Abdullah, N., Ariffin, S.H.Z., Che Abdullah, C.A. & Yazid, F. 2020. Effects
of the sintering process on nacre-derived hydroxyapatite scaffolds for bone
engineering. Molecules 25(14): 3129.
Wan, H.W.N.,
Ghafar, N.A., Chin, K.Y. & Ima-Nirwana, S. 2018. Annatto-derived
tocotrienol stimulates osteogenic activity in preosteoblastic MC3T3-E1 cells: A temporal sequential study. Drug Des. Devel. Ther. 12:
1715-1726.
Yan, X.Z., Yang,
W., Yang, F., Kersten-Niessen, M., Jansen, J.A. & Both, S.K. 2014. Effects
of continuous passaging on mineralization of MC3T3-E1 cells with improved
osteogenic culture protocol. Tissue Eng. Part C Methods 20(3): 198-204.
Yazid, F., Kay,
A., Qin, W., Luchman, N., Wahab, R.A. & Ariffin, S. 2019. Morphology and
osteogenic capability of MC3T3-E1 cells on granular hydroxyapatite scaffold. J. Biol. Sci. 19:
201-209.
Yazid, M.D.,
Ariffin, S.H.Z., Senafi, S., Razak, M.A. & Wahab, R.M.A. 2010.
Determination of the differentiation capacities of murines’ primary
mononucleated cells and MC3T3-E1 cells. Cancer Cell Int. 10: 1-12.
Zakaria, Z.,
Seman, C.N.Z.C., Buyong, Z., Sharifudin, M.A., Zulkifly, A.H. & Khalid,
K.A. 2016. Histological evaluation of hydroxyapatite granules with and without
platelet-rich plasma versus an autologous bone graft: Comparative study of
biomaterials used for spinal fusion in a New Zealand white rabbit model. Sultan
Qaboos Univ. Med. J. 16(4): 422-429.
Zulkifly, A.H.,
Khalid, K.A., Azril, M.A., Shukrimi, A., Yusof, N.M. & Ahmad, A.C. 2008.
Granules hydroxyapatite application in fractures. Eur. Cells Maters. 16: 56.
*Corresponding
author; email: rohaya_megat@ukm.edu.my
|