Sains Malaysiana 51(5)(2022): 1511-1524

http://doi.org/10.17576/jsm-2022-5105-20

 

Volume Shrinkage during Carbothermic Reduction of Low-Grade Iron Ore Containing Goethite and Coal Composite

(Pengecutan Isi Padu Semasa Pengurangan Karbotermik Komposit Bijih Besi Gred Rendah yang Mengandungi Goetit dan Arang)

 

AGUNG SETIAWAN1, INA ERMAWATI1, FARRAS ANGGRAINI1, FAIZINAL ABIDIN2, ABDUL HAPID3, ADJI KAWIGRAHA3, SRI HARJANTO1,* & M. AKBAR RHAMDHANI4

 

1Department of Metallurgical and Materials Engineering, Faculty of Engineering, Universitas Indonesia, 16424 Kampus Baru UI Depok, West Java, Indonesia

2Directorate of Utilization of Research and Innovation by Government, Society, and Micro, Small, and Medium Enterprises- National Research and Innovation Agency (BRIN), Jakarta 10340, Indonesia

3Research Center for Mining Technology, National Research and Innovation Agency (BRIN), Building 820, Puspitek, Banten 15314, Indonesia

4Fluid and Process Dynamics (FPD) Research Group, Department of Mechanical and Product Design Engineering, Swinburne University of Technology, Melbourne, VIC 3122, Australia

 

Received: 7 June 2021/Accepted: 20 October 2021

 

Abstract

The volume shrinkage and reduction behavior of low-grade iron ore goethite during the solid-state carbothermic process was studied and compared to synthetic goethite. The carbothermic reduction process using low-grade coal as a reducing agent was carried out in the temperature range 1000-1200 °C up to 60 min of reaction time. The results demonstrated that the volume shrinkage, reduction degree, and metallization degree of reduced samples increase with increasing temperature and reaction time. Compared to the reduced samples using synthetic goethite, the volume shrinkage, reduction degree, and metallization degree of the reduced samples using iron ore are lower due to the presence of impurities in Sebuku iron ore concentrates, which include Mg, Mn, Al, and Si. The highest volume shrinkage observed at 1200 °C for 60 min reaction time for the reduced samples using iron ore and synthetic goethite was 63.57±0.57 and 76.51±1.53%, respectively. The observed phases at this point were metallic iron (Fem) and spinel (Fe,Mg)Al2O4. The volume shrinkage of the reduced samples was caused primarily by the weight loss due to carbon, oxygen, and combined water evaporation, as well as the sintering of gangue oxides and metallic iron particles, and partial melting of these phases.

 

Keywords: Direct reduction; goethite; low-grade iron ore; rotary hearth furnace; volume shrinkage

 

Abstrak

Pengecutan isi padu dan tingkah laku pengurangan bijih besi kelas rendah yang mengandungi goetit semasa proses karbotermik keadaan pepejal dikaji berbanding dengan goetit sintetik. Proses pengurangan karbotermik menggunakan arang batu rendah sebagai agen pengurangan dilakukan dalam julat suhu 1000-1200 °C hingga 60 min masa reaksi. Hasil kajian menunjukkan bahawa pengecutan isi padu, tahap pengurangan dan tahap pengukuran sampel yang dikurangkan meningkat dengan peningkatan suhu dan tindak balas masa. Berbanding dengan sampel yang dikurangkan menggunakan goetit sintetik, pengecutan isi padu, tahap pengurangan dan tahap metalisasi sampel yang dikurangkan menggunakan bijih besi lebih rendah kerana beberapa kekotoran dalam pekatan bijih besi Sebuku, termasuk Mg, Al dan Si. Nilai pengecutan isi padu tertinggi yang dijumpai pada suhu 1200 °C selama 60 min masa reaksi bagi sampel yang dikurangkan menggunakan bijih besi dan goetit sintetik masing-masing adalah 63.57±0.57 dan 76.51±1.53%. Fasa yang diamati pada ketika ini adalah besi logam (Fem) dan spinel (Fe,Mg)Al2O4. Pengecutan jumlah sampel yang dikurangkan disebabkan terutamanya oleh penurunan berat badan karbon, oksigen dan air gabungan dan pertumbuhan sintering oksida gangue dan zarah besi logam dan pencairan sebahagian fasa gangue.

 

Kata kunci: Bijih besi bermutu rendah; goetit; pengecutan isi padu; pengurangan langsung; relau perapian putar

   

REFERENCES

Abd Rashid, R.Z., Salleh, H.M., Ani, M.H., Yunus, N.A., Akiyama, T. & Purwanto, H. 2014. Reduction of low grade iron ore pellet using palm kernel shell. Renewable Energy 63: 617-623.

Ford, R.G. & Bertsch, P.M. 1999. Distinguishing between surface and bulk dehydrationdehydroxylation reactions in synthetic goethites by highresolution thermogravimetric analysis. Clays and Clay Minerals 47(3): 329-337.

Ghose, S.K., Waychunas, G.A., Trainor, T.P. & Eng, P.J. 2010. Hydrated goethite (α-FeOOH) (1 0 0) interface structure: ordered water and surface functional groups. Geochimica et Cosmochimica Acta 74(7): 1943-1953.

Halder, S. & Fruehan, R.J. 2008a. Reduction of iron-oxide-carbon composites: part II. Rates of reduction of composite pellets in a rotary hearth furnace simulator. Metallurgical and Materials Transactions B 39(6): 796-808.

Halder, S. & Fruehan, R.J. 2008b. Reduction of iron-oxide-carbon composites: Part III. shrinkage of composite pellets during reduction. Metallurgical and Materials Transactions B 39(6): 809-817.

Jang, K.O., Nunna, V.R., Hapugoda, S., Nguyen, A.V. & Bruckard, W.J. 2014. Chemical and mineral transformation of a low grade goethite ore by dehydroxylation, reduction roasting and magnetic separation. Minerals Engineering 60: 14-22.

Liu, H., Chen, T., Zou, X., Qing, C. & Frost, R.L. 2013. Thermal treatment of natural goethite: Thermal transformation and physical properties. Thermochimica Acta 568: 115-121.

McCann, G., Strezov, V., Lucas, J.A., Evans, T. & Strezov, L. 2004. Iron ore characterisation during high temperature thermal processing. Developments in Chemical Engineering and Mineral Processing 12(3-4): 369-382.

Merk, R. & Pickles, C.A. 1988. Reduction of ilmenite by carbon monoxide. Canadian Metallurgical Quarterly 27(3): 179-185.

Miura, K., Miyabayashi, K., Kawanari, M. & Ashida, R. 2011. Enhancement of reduction rate of iron ore by utilizing low grade iron ore and brown coal derived carbonaceous materials. ISIJ International 51(8): 1234-1239.

Ogbezode, J., Ajide, O., Ofi, S. & Oluwole, O. 2021. Determination of the reaction rate controlling resistance of goethite iron ore reduction using CO/CO2 gases from wood charcoal. Materials Proceedings 3(1): 27.

Ponomar, V.P. 2018. Thermomagnetic properties of the goethite transformation during high-temperature treatment. Minerals Engineering 127: 143-152.

Prusti, P., Barik, K., Dash, N., Biswal, S.K. & Meikap, B.C. 2021. Effect of limestone and dolomite flux on the quality of pellets using high LOI iron ore. Powder Technology 379: 154-164.

Ravisankar, V., Venugopal, R. & Bhat, H. 2019. Investigation on beneficiation of goethite-rich iron ores using reduction roasting followed by magnetic separation. Mineral Processing and Extractive Metallurgy 128(3): 175-182.

Sarkar, B.K., Samanta, S., Dey, R. & Das, G.C. 2016. A study on reduction kinetics of titaniferous magnetite ore using lean grade coal. International Journal of Mineral Processing 152: 36-45.

Schwertmann, U. 1984. The double dehydroxylation peak of goethite. Thermochimica Acta 78(1-3): 39-46.

Setiawan, A., Suratha, R.P., Harjanto, S. & Kusrini, E. 2019. Production of pig iron nugget from low-grade iron ore and pyrolyzed oil-palm-empty-fruit-bunch composites. In IOP Conference Series: Materials Science and Engineering 602(1): 012073.

Valix, M. & Cheung, W.H. 2002. Study of phase transformation of laterite ores at high temperature. Minerals Engineering 15(8): 607-612.

Wang, G., Wang, J. & Xue, Q. 2018. Kinetics of the volume shrinkage of a magnetite/carbon composite pellet during solid-state carbothermic reduction. Metals 8(12): 1050.

Wang, G., Xue, Q. & Wang, J. 2015. Volume shrinkage of ludwigite/coal composite pellet during isothermal and non-isothermal reduction. Thermochimica Acta 621: 90-98.

Wang, Q.Y., Wu, Y., Li, Y.H. & Yang, X. 2015. Biomass reduction roasting-magnetic separation of low grade goethite. In Materials Science Forum. Trans Tech Publications Ltd. 814: 235-240.

Weissenborn, P.K., Dunn, J.G. & Warren, L.J. 1994. Quantitative thermogravimetric analysis of haematite, goethite and kaolinite in Western Australian iron ores. Thermochimica Acta 239: 147-156.

World Steel Association. 2020. Steel Statistical Yearbook 2019 Concise Version. World Steel Association.

Yellishetty, M., Ranjith, P.G. & Tharumarajah, A. 2010. Iron ore and steel production trends and material flows in the world: is this really sustainable? Resources, Conservation and Recycling 54(12): 1084-1094.

Yu, Y. & Qi, C. 2011. Magnetizing roasting mechanism and effective ore dressing process for oolitic hematite ore. Journal Wuhan University of Technology, Materials Science Edition 26(2): 176-181.

 

*Corresponding author; email: sri.harjanto@ui.ac.id

 

 

 

previous