Sains
Malaysiana 51(5)(2022): 1557-1566
http://doi.org/10.17576/jsm-2022-5105-23
Time-Temperature
Profiles Effect on Thermoluminescence Glow Curve Formation of Germanium Doped
Optical Fibres
(Kesan
Profil Suhu Masa pada Pembentukan Lengkung Cahaya Termoluminesen bagi Gentian
Optik Berdop Germanium)
MUHAMMAD
SAFWAN AHMAD FADZIL1,*, NORAMALIZA MOHD NOOR2, NIZAM TAMCHEK3 & UNG NGIE MIN4
1Diagnostic
Imaging and Radiotherapy Program, Centre for Diagnostic, Therapeutic and Investigative
Studies, Faculty of Health Sciences,
Universiti Kebangsaan Malaysia, 50300
Kuala Lumpur, Federal Territory, Malaysia
2Department
of Radiology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor Darul Ehsan, Malaysia
3Department
of Physics, Faculty of Science, Universiti
Putra Malaysia, 43400 UPM Serdang, Selangor Darul Ehsan, Malaysia
4Clinical
Oncology Unit, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Federal Territory, Malaysia
Received: 5 July 2021/Accepted: 7
October 2021
Abstract
The development of optical
fibres technology grows in response to seeking a radiation detector with better
thermoluminescence (TL) performance. Concerning the dosimetric characterization
study by previous researchers, this research work has widened the exploration
to optimize the time-temperature profile (TTP) in connection with the glow
curve formation of the optical fibres. Two forms of germanium (Ge) doped
optical fibres, namely cylindrical optical fibre (CF) and flat optical fibre
(FF) were fabricated, and the TTP were investigated prior to commissioning the
optical fibres for fieldwork. CF and FF were irradiated to the dose of 2 Gy
using a 6 MV linear accelerator. Various TTP profiles, including preheat
temperature, preheat time, acquisition temperature rate, and acquisition time
were varied to determine the best thermal profile for the CF and FF based on
the glow curve formations. Out of 4 parameters, an increase in preheat
temperatures ranging from 40 to 120 °C caused a significant variation in the glow
curve formation, thus possibly giving rise to different TL signals of the
optical fibres. The maximum glow peak
temperature of CF and FF was unvarying when different preheat temperatures
employed. These findings support the
conceptual idea that manipulating the optical fibres’ readout system can alter
the glow curve formation. Thus, an optimized TTP will provide the correct glow
curve configuration for kinetic parameter analysis.
Keywords: Optical fibres; thermoluminescence glow
curve; time-temperature profiles
Abstrak
Pembangunan teknologi gentian optik berkembang sebagai gerak balas dalam
mencari pengesan radiasi dengan prestasi pendar gerlap terma (TL) yang lebih
baik. Merujuk kepada kajian pencirian dosimetrik oleh penyelidik terdahulu,
penyelidikan ini telah memperluaskan penerokaan untuk mengoptimumkan profil
suhu-masa (TTP) yang berkaitan dengan pembentukan lengkung cahaya daripada gentian optik. Dua bentuk germanium
(Ge) dop gentian optik, iaitu gentian optik silinder (CF) dan gentian optik
rata (FF) difabrikasi dan TTP dikaji sebelum gentian optik digunakan untuk
kerja lapangan. CF dan FF disinari dengan dos radiasi 2 Gy menggunakan pemecut linear
bertenaga 6 MV. Pelbagai profil TTP, termasuk suhu pra-pemanasan, tempoh masa
pemanasan, kadar pemerolehan suhu dan masa pemerolehan diubah untuk menentukan
profil terma yang terbaik untuk CF dan FF berdasarkan penghasilan lengkung
berbara. Daripada 4 parameter,
peningkatan suhu pra-pemanasan antara 40 hingga 120 °C menyebabkan variasi yang
ketara dalam pembentukan lengkung berbara, dan ia akan menghasilkan isyarat TL
yang berbeza daripada gentian optik. Suhu maksimum puncak berbara CF dan FF
tidak berubah apabila suhu pra-pemanasan yang berbeza digunakan. Penemuan ini
menyokong idea konseptual bahawa manipulasi terhadap sistem pembacaan gentian
optik boleh mengubah pembentukan lengkung berbara. Oleh itu, TTP yang optimum
akan menyediakan konfigurasi lengkung berbara yang tepat untuk analisa
parameter kinetik.
Kata
kunci: Gentian optik; lengkung
berbara pendar gerlap terma; profil suhu-masa
REFERENCES
Begum, M., Rahman, A.K.M.M., Begum, M., Abdul-Rashid,
H.A., Yusoff, Z. & Bradley, D.A. 2018. Harnessing the thermoluminescence of
Ge-doped silica flat-fibres for medical dosimetry. Sensors and
Actuators A: Physical 270: 170-176.
Begum, M., Rahman, A.K.M.M., Abdul-Rashid, H.A.,
Yusoff, Z., Begum, M., Mat-Sharif, K.A., Amin, Y.M. & Bradley, D.A. 2015.
Thermoluminescence characteristics of Ge-doped optical fibers with different
dimensions for radiation dosimetry. Applied Radiation and Isotopes 100: 79-83.
Benabdesselam, M., Mady, F., Girard, S., Mebrouk, Y.,
Duchez, J.B., Gaillardin, M. & Paillet, P. 2013. Performance of Ge-doped
optical fiber as a thermoluminescent dosimeter. IEEE Transactions on
Nuclear Science 60(6):
4251-4256.
Bradley, D.A., Shafiqah, A.S., Rozaila, Z.S., Sabtu,
S.N., Sani, S.A., Alanazi, A.H., Jafari, S.M., Mahdiraji, G.A., Adikan, F.M.,
Maah, M.J. & Nisbet, A.N. 2017. Developments
in production of silica-based thermoluminescence dosimeters. Radiation Physics and Chemistry 137: 37-44.
Bradley, D.A., Zubair, H.T., Oresegun, A., Louay,
G.T., Abdul-Rashid, H.A., Ung, N.M. & Alzimami, K.S. 2019. Towards the
development of doped silica radioluminescence dosimetry. Radiation
Physics and Chemistry 154: 46-52.
Correia, R., James, S., Lee, S.W., Morgan, S.P. &
Korposh, S. 2018. Biomedical application of optical fibre sensors. Journal
of Optics 20(7):
073003.
Entezam, A., Khandaker, M.U., Amin, Y.M., Ung, N.M.,
Maah, J. & Bradley, D.A. 2016. Thermoluminescence response of Ge-doped SiO2 fibres to electrons, X-and γ-radiation. Radiation Physics and
Chemistry 121: 115-121.
Fadzil, M.S.A., Min, U.N., Ariffin, A., Bradley, D.A.
& Noor, N.M. 2019. Evaluation on thermoluminescence kinetic parameters of
Ge-doped cylindrical fibre dosimeter by computerised glow curve deconvolution
technique. In Proceeding of International Symposium on Radiation
Detectors and Their Uses. p. 011036.
Fadzil, M.S.A., Tamchek, N., Ung, N.M., Ariffin, A.,
Abdullah, N., Bradley, D.A. & Noor, N.M. 2018. Assessment of
thermoluminescence glow curves and kinetic parameters of fabricated Ge-doped
flat fiber for radiotherapy application. Jurnal
Sains Nuklear Malaysia 30(2):
1-14.
Fadzil, M.S.A., Min, U.N., Bradley, D.A. & Noor,
N.M. 2017. Different germanium dopant
concentration and the thermoluminescence characteristics of flat Ge-doped
optical fibres. Pertanika Journal of
Science and Technology 25(1): 327-336.
Ghomeishi, M., Mahdiraji, G.A., Adikan, F.R.M., Ung,
N.M. & Bradley, D.A. 2015. Sensitive fibre-based thermoluminescence
detectors for high resolution in-vivo dosimetry. Scientific
Reports 5: 1-10.
Hassan, M.F.,
Rahman, W.N.W.A., Kadir, A.B.A., Isa, N.M., Tominaga, T., Geso, M., Akasaka,
H., Bradley, D.A. & Noor, N.M. 2018. Ge-doped silica fibre proton beam
measurements: Thermoluminescence dose-response and glow curve characteristics. International
Journal of Nanoelectronics and Materials 11: 209-218.
Horowitz, Y.S.
& Yossian, D. 1995. Computerised glow curve deconvolution: Application to
thermoluminescence dosimetry. Radiation
Protection Dosimetry 60(1): 1-114.
Lam, S.E.,
Bradley, D.A. & Khandaker, M.U. 2021. Small-field radiotherapy photon beam
output evaluation: Detectors reviewed. Radiation Physics and Chemistry 178:
108950.
Lam, S.E.,
Bradley, D.A., Mahmud, R., Pawanchek, M., Rashid, H.A. & Noor, N.M. 2019.
Dosimetric characteristics of fabricated Ge-doped silica optical fibre for
small-field dosimetry. Results in Physics 12: 816-826.
Lam, S.E.,
Alawiah, A., Bradley, D.A. & Noor, N.M. 2017. Effects of time-temperature
profiles on glow curves of germanium-doped optical fibre. Radiation
Physics and Chemistry 137: 56-61.
Mustafa, S., Saad,
F.F.A., Tamchek, N., Mohamed, F., Bajuri, F. & Noor, N.M. 2018. Response of
fabricated germanium optical fibre subjected to low dose neutron-gamma
irradiation. International Journal
of Nanoelectronics and Materials 11: 253-260.
Noor, N.M.,
Fadzil, M.S.A., Ung, N.M., Maah, M.J., Mahdiraji, G.A., Abdul-Rashid, H.A.
& Bradley, D.A. 2016. Radiotherapy dosimetry and the thermoluminescence
characteristics of Ge-doped fibres of differing germanium dopant concentration
and outer diameter. Radiation Physics and Chemistry 126: 56-61.
O'Keeffe, S., McCarthy, D., Woulfe, P., Grattan,
M.W.D., Hounsell, A.R., Sporea, D., Mihai, L., Vata, I., Leen, G. & Lewis,
E. 2015. A review of recent advances in optical fibre sensors for in vivo dosimetry during radiotherapy. The British Journal of Radiology 88(1050): 20140702.
Rais, N.N.M., Bradley, D.A., Hashim, A., Isa, N.M.,
Osman, N.D., Ismail, I., Hasan, H.A. & Noor, N.M. 2019a. Dosimetric
response of fabricated Ge-doped optical fibres in computed tomography RQT beam
quality x-ray beams. Journal of Radiological Protection 39(3): N8.
Rais, N.N.M., Bradley, D.A., Hashim, A., Osman, N.D.
& Noor, N.M. 2019b. Fabricated germanium-doped fibres for computed
tomography dosimetry. Applied Radiation and Isotopes 153:
108810.
Rodrigues, M.L., Kearfott, K.J., Hsu, S.H., Schlicht,
J.E., Parker, L.W. & Baumgarten, L.R. 2005. The effect of the
time-temperature heating profile design on the precision and accuracy of
thermoluminescent (TL) glow curve peak areas for LiF: Mg, Ti. In Proceeding of the 50th Annual
Meeting of the Health Physics Society. 89(1): S8-S8.
Thermo Electron Corporation.
2002. Harshaw Standard TTP Recommendations - Technical Notice - Publication
Number: DOSM-0-N-1202-001. Ohio: Thermo Electron Corporation.
Yusof, M.F.M.,
Rashid, N.A. & Abdullah, R. 2013. Reproducibility and effect of delayed
readout on LiF:Mg,Ti TLD treated with different
preheat time techniques: A glow curve study. Jurnal Sains Nuklear
Malaysia 25(1): 35-44.
Zakaria, Z., Aziz,
M.A., Ishak, N.H., Suppiah, S., Bradley, D.A. & Noor, N.M. 2020. Advanced
thermoluminescence dosimetric characterization of fabricated Ge-Doped optical
fibres (FGDOFs) for electron beams dosimetry. Radiation Physics and
Chemistry 166: 108487.
*Corresponding author; email:
safwanfadzil@ukm.edu.my
|