Sains Malaysiana 51(5)(2022): 1567-1576

http://doi.org/10.17576/jsm-2022-5105-24

 

Carrier Density and Thickness Optimization of InxGa1-xN Layer by Scaps-1D Simulation for High Efficiency III-V Solar Cell

(Pengoptimuman Ketumpatan Pembawa dan Ketebalan Lapisan InxGa1-xN dengan menggunakan Simulasi Scaps-1D untuk Kecekapan Tinggi Sel Suria III-V)

 

HABIB ULLAH MANZOOR1,2, TAN AIK KWAN1, NG SHA SHIONG1,* & ZAINURIAH HASSAN1

 

1Institute of Nano Optoelectronics Research and Technology (INOR), Universiti Sains Malaysia, 11800 USM, Penang, Malaysia

2University of Engineering and Technology, Lahore-FSD Campus, Pakistan

 

Received: 15 July 2021/Accepted: 29 September 2021

 

Abstract

In this study, the indium gallium nitride (InxGa1-xN) p-n junction solar cells were optimized to achieve the highest conversion efficiency. The InxGa1-xN p-n junction solar cells with the whole indium mole fraction (0 £ x £ 1) were simulated using SCAPS-1D software. Optimization of the p- and n-InxGa1-xN layer's thickness and carrier density were also carried out. The thickness and carrier density of each layer was varied from 0.01 to 1.50 µm and 1015 to 1020 cm-3. The simulation results showed that the highest conversion efficiency of 23.11% was achieved with x = 0.6. The thickness (carrier density) of the p- and n-layers for this In0.6Ga0.4N p-n junction solar cell are 0.01 (1020) and 1.50 μm (1019 cm-3), respectively. Simulation results also showed that the conversion efficiency is more sensitive to the variations of layer's thickness and carrier density of the top p-InxGa1-xN layer than the bottom n-InxGa1-xN layer. Besides that, the results also demonstrated that thinner p-InxGa1-xN layer with higher carrier density offers better conversion efficiency.

 

Keywords: Photovoltaics; semiconducting indium compounds; solar energy; thin films solar cell; III-V nitride

 

Abstrak

Dalam kajian ini, sel suria indium galium nitrida (InxGa1-xN) bersimpang p-n telah dioptimumkan untuk mencapai kecekapan penukaran yang tertinggi. Sel suria InxGa1-xN bersimpang p-n dengan keseluruhan pecahan mole indium (0 ≤ x ≤ 1) telah disimulasi dengan menggunakan perisian SCAPS-1D. Pengoptimuman untuk ketebalan dan ketumpatan pembawa bagi lapisan p- dan n-InGaN juga telah dijalankan. Ketebalan dan ketumpatan pembawa bagi setiap lapisan telah diubah daripada 0.01 hingga 1.50 µm dan 1015 hingga 1020 cm-3. Keputusan simulasi menunjukkan bahawa kecekapan penukaran tertinggi sebanyak 23.11% telah dicapai dengan x = 0.6. Ketebalan (ketumpatan pembawa) bagi lapisan p- dan n- untuk sel suria In0.6Ga0.4N adalah 0.01 (1020) dan 1.50 µm (1019 cm-3), masing-masing. Keputusan simulasi juga menunjukkan bahawa kecekapan penukaran adalah lebih sensitif terhadap perubahan ketebalan dan ketumpatan pembawa bagi lapisan p-InxGa1-xN atas berbanding dengan lapisan n-InxGa1-xN bawah. Selain itu, keputusan simulasi juga menunjukkan bahawa lapisan p-InxGa1-xN yang lebih nipis bersama dengan ketumpatan pembawa yang lebih tinggi memberi kecekapan penukaran yang lebih tinggi.

 

Kata kunci: Fotovolta; sebatian semikonduktor indium; sel suria filem nipis; tenaga suria; III-V nitride

 

REFERENCES

Akter, N., Miah, M.S., Matin, M.A. & Amin, N. 2019. Prospect of back contact for a highly efficient ingan thin film solar cell from numerical analysis. In 1st International Conference on Robotics, Electrical and Signal Processing Techniques, ICREST 2019. ICREST. pp. 622-625.

Ayari, T., Sundaram, S., Li, X., Alam, S., Bishop, C., El Huni, W., Jordan, M.B., Halfaya, Y., Gautier, S., Voss, P.L. & Salvestrini, J.P.  2018. Heterogeneous integration of thin-film InGaN-based solar cells on foreign substrates with enhanced performance. ACS Photonics 5(8): 3003-3008.

Belghouthi, R. & Aillerie, M. 2019. Temperature dependence of InGaN/GaN Multiple quantum well solar cells. Energy Procedia 157: 793-801.

Belghouthi, R., Aillerie, M., Rached, A. & Mejri, H. 2019. Effect of temperature on electronic and electrical behavior of InGaN double hetero-junction p-i-n solar cells. Journal of Materials Science: Materials in Electronics 30(4): 4231-4237.

Bi, Z., Bacon-Brown, D., Du, F., Zhang, J., Xu, S., Li, P., Zhang, J., Zhan, Y. & Hao, Y. 2018. An InGaN/GaN MQWs solar cell improved by a surficial gan nanostructure as light traps. IEEE Photonics Technology Letters 30(1): 83-86.

Boumaour, M., Sali, S., Kermadi, S., Zougar, L., Bahfir, A. & Chaieb, Z. 2019. High efficiency silicon solar cells with back ZnTe layer hosting IPV effect: A numerical case study. Journal of Taibah University for Science 13(1): 696-703.

Chouchen, B., Gazzah, M.H., Bajahzar, A. & Belmabrouk, H. 2019. Numerical modeling of InGaN/GaN p-i-n solar cells under temperature and hydrostatic pressure effects. AIP Advances 9(4): 045313.

Feng, S.W., Lai, C.M., Tsai, C.Y., Su, Y.R. & Tu, L.W. 2013. Modeling of InGaN p-n junction solar cells. Optical Materials Express 3(10): 1777.

Gupta, N.D., Janyani, V. & Mathew, M. 2016. Light trapping in p-i-n superlattice based InGaN/GaN Solar cells using photonic crystal. Optical and Quantum Electronics 48(11): 1-17.

Hussain, S., Prodhan, M.T. & Rahman, M.M. 2021. Simulation analysis to optimize the performance of homojunction p-i-n In0.7Ga0.3N solar cell. Semiconductor Physics, Quantum Electronics and Optoelectronics 24(2): 192-199.

Kim, S.U. & Ra, Y.H. 2021. Modeling and epitaxial growth of homogeneous long-InGaN nanowire structures. Nanomaterials 11(1): 9.

Kour, R., Arya, S., Verma, S., Singh, A., Mahajan, P. & Khosla, A. 2020. Review - Recent advances and challenges in Indium Gallium nitride (In x Ga 1-x N) materials for solid state lighting. ECS Journal of Solid State Science and Technology 9(1): 015011.

Kuo, Y.K. & Chang, J.Y. 2016. Effect of composition-graded interlayers in double-heterostructure blue InGaN light-emitting diodes. Physica Status Solidi (A) Applications and Materials Science 213(1): 154-157.

Levinshtein, M.E., Rumyantsev, S.L. & Shur, M.S. 2001. Properties of Advanced Semiconductor Materials: GaN, AIN, InN, BN, SiC, SiGe. New Jersey: John Wiley & Sons. pp. 1-216.

Li, X.Y., Shan, H.S. & Zheng, J. 2020. Statistical analysis of the photoelectric characteristics for InGaN/GaN MQWs solar cells following proton irradiation. ECS Journal of Solid State Science and Technology 9(5): 055014.

Liu, J., Liang, H., Xia, X., Abbas, Q., Liu, Y., Luo, Y., Zhang, Y., Yan, L., Han, X. & Du, G. 2018. Anomalous Indium incorporation and optical properties of high Indium content InGaN grown by MOCVD. Journal of Alloys and Compounds 735: 1239-1244.

Manzoor, H.U., Zawawi, M.M., Pakhuruddin, M.Z., Ng, S.S. & Hassan, Z. 2021. High conversion and quantum efficiency Indium-rich p-InGaN/p-InGaN/n-InGaN solar cell. Physica B: Condensed Matter 622: 413339.

Marouf, Y., Dehimi, L., Bouzid, F., Pezzimenti, F. & Della Corte, F.G. 2018. Theoretical design and performance of InxGa1-XN single junction solar cell. Optik 163: 22-32.

Marouf, Y., Dehimi, L. & Pezzimenti, F. 2019. Simulation study for the current matching optimization in In0.48Ga0.52N/In0.74Ga0.26N dual junction solar cells. Superlattices and Microstructures 130: 377-389.

McAllister, A., Bayerl, D. & Kioupakis, E. 2018. Radiative and auger recombination processes in Indium Nitride. Applied Physics Letters 112(25): 1-6.

Moustafa, M.O. & Alzoubi, T. 2019. Numerical simulation of single junction ingan solar cell by scaps. In Key Engineering Materials, edited by Korsunsky, A.M. Bäch SZ: Trans Tech Publications Ltd. pp. 407-413.

Nath, P., Biswas, A. & Nath, V. 2020. Performance optimization of solar cells using non-polar, semi-polar and polar InGaN/GaN multiple quantum wells alongside AlGaN blocking layers. Microsystem Technologies 27(1): 301-306.

Nawaz, M. & Ahmad, A. 2012. A TCAD-based modeling of GaN/InGaN/Si solar cells. Semiconductor Science and Technology 27(3): 035019.

Pal, D. & Das, S. 2020. Numerical simulation of GaN/InGaN p-i-n solar cells: Role of interlayers in promoting photovoltaic response. Optik 221: 165403.

Park, J.H., Nandi, R., Sim, J.K., Um, D.Y., Kang, S., Kim, J.S. & Lee, C.R. 2018. A III-nitride nanowire solar cell fabricated using a hybrid coaxial and uniaxial InGaN/GaN multi quantum well nanostructure. RSC Advances 8(37): 20585-20592.

Rahman, M.A., Islam, M.J., Islam, M.R. & Mahmud, M.P. 2021. Strain dependent performance analysis of InGaN multi-junction solar cell. Transactions on Electrical and Electronic Materials22: 833-842.

Shan, H.S., Li, X.Y., Chen, B., Ma, S.F., Li, L. & Xu, B.S.  2019. Effect of indium composition on the microstructural properties and performance of InGaN/GaN MQWs solar cells. IEEE Access 7: 182573-182579.

Siddharth, G., Garg, V., Sengar, B.S., Bhardwaj, R., Kumar, P. & Mukherjee, S. 2019. Analytical study of performance parameters of InGaN/GaN multiple quantum well solar cell. IEEE Transactions on Electron Devices 66(8): 3399-3404.

Smets, A.H., Jäger, K., Isabella, O., Swaaij, R.A. & Zeman, M. 2015. Solar Energy: The Physics and Engineering of Photovoltaic Conversion, Technologies and Systems. Cambridge: UIT Cambridge. pp. 1-484.

Tessarek, C., Goldhahn, R., Sarau, G., Heilmann, M. & Christiansen, S. 2015. Carrier-induced refractive index change observed by a whispering gallery mode shift in GaN microrods. New Journal of Physics 17(8): 83047.

Tian, M., Qian, Y.D., Zhang, C., Li, L., Yao, S.D., Ferguson, I.T., Talwar, D.N., Zhai, J.Y., Meng, D.H., He, K.Y. & Wan, L.Y. 2018. Investigation of high Indium-composition InGaN/GaN heterostructures on ZnO grown by metallic organic chemical vapor deposition. Optical Materials Express 8(10): 3184.

Uprety, P., Subedi, I., Junda, M.M., Collins, R.W. & Podraza, N.J. 2019. Photogenerated carrier transport properties in silicon photovoltaics. Scientific Reports 9(1): 1-12.

Wang, T., Wang, X., Chen, Z., Sun, X., Wang, P., Zheng, X., Rong, X., Yang, L., Guo, W., Wang, D. & Cheng, J. 2018. High-mobility two-dimensional electron gas at InGaN/InN heterointerface grown by molecular beam epitaxy. Advanced Science 5(9): 1-7.

Wu, S., Cheng, L. & Wang, Q. 2018. Effects of the unintentional background concentration, Indium composition and defect density on the performance of InGaN p-i-n homojunction solar cells. Superlattices and Microstructures 119: 9-18.

Wu, J., Walukiewicz, W., Yu, K.M., Shan, W., Ager Iii, J.W., Haller, E.E., Lu, H., Schaff, W.J., Metzger, W.K. & Kurtz, S. 2003. Superior radiation resistance of in 1-XGa XN alloys: Full-solar-spectrum photovoltaic material system. Journal of Applied Physics 94(10): 6477-6482.

Yin, H., Qian, Y., Xie, L., Song, C., Wang, X., Chen, H., Wang, P., Zhou, G. & Nötzel, R. 2019. Electrocatalytic activity of InN/InGaN quantum dots. Electrochemistry Communications 106: 106514.

Zhang, X., Wang, X., Xiao, H., Yang, C., Ran, J., Wang, C., Hou, Q. & Li, J. 2007. Simulation of In0.65Ga0.35 N single-junction solar cell. Journal of Physics D: Applied Physics 40(23): 7335-7338.

Zhang, Y., Guo, R., Xu, S., Zhang, J., Zhao, S., Wang, H., Hu, Q., Zhang, C. & Hao, Y. 2019. High-performance high electron mobility transistors with GaN/InGaN composite channel and superlattice back barrier. Applied Physics Letters 115(7): 072105.

Zinovchuk, A.V. & Gryschuk, A.M. 2018. Alloy-assisted auger recombination in InGaN. Optical and Quantum Electronics 50(12): 1-8.

 

*Corresponding author; email: shashiong@yahoo.com

 

 

 

previous