Sains Malaysiana 51(5)(2022): 1567-1576
http://doi.org/10.17576/jsm-2022-5105-24
Carrier Density and Thickness Optimization of InxGa1-xN
Layer by Scaps-1D Simulation for High Efficiency III-V Solar Cell
(Pengoptimuman
Ketumpatan Pembawa dan Ketebalan Lapisan InxGa1-xN dengan
menggunakan Simulasi Scaps-1D untuk Kecekapan Tinggi Sel Suria III-V)
HABIB ULLAH MANZOOR1,2, TAN AIK KWAN1, NG SHA SHIONG1,* & ZAINURIAH HASSAN1
1Institute
of Nano Optoelectronics Research and Technology (INOR), Universiti Sains
Malaysia, 11800 USM, Penang, Malaysia
2University of Engineering and Technology, Lahore-FSD
Campus, Pakistan
Received: 15 July 2021/Accepted: 29 September 2021
Abstract
In
this study, the indium gallium nitride (InxGa1-xN) p-n junction solar cells
were optimized to achieve the highest conversion efficiency. The InxGa1-xN p-n junction solar
cells with the whole indium mole fraction (0 £ x £ 1) were simulated using SCAPS-1D software. Optimization of the p- and n-InxGa1-xN layer's thickness and carrier
density were also carried out. The thickness and carrier density of each layer was varied from 0.01 to 1.50
µm and 1015 to
1020 cm-3. The simulation results showed that the highest
conversion efficiency of 23.11% was achieved with x = 0.6. The thickness
(carrier density) of the p- and n-layers for this In0.6Ga0.4N p-n junction solar cell
are 0.01
(1020) and 1.50 μm (1019 cm-3), respectively.
Simulation results also showed that the conversion efficiency is more sensitive
to the variations of layer's thickness and carrier density of the top p-InxGa1-xN layer than the bottom n-InxGa1-xN layer. Besides that,
the results also demonstrated that thinner p-InxGa1-xN layer with higher carrier
density offers better conversion efficiency.
Keywords: Photovoltaics; semiconducting indium
compounds; solar energy; thin films solar cell; III-V nitride
Abstrak
Dalam
kajian ini, sel suria indium galium nitrida (InxGa1-xN)
bersimpang p-n telah dioptimumkan untuk mencapai kecekapan penukaran yang
tertinggi. Sel suria InxGa1-xN bersimpang p-n dengan
keseluruhan pecahan mole indium (0 ≤ x ≤ 1) telah disimulasi dengan
menggunakan perisian SCAPS-1D. Pengoptimuman untuk ketebalan dan ketumpatan pembawa bagi lapisan p- dan
n-InGaN juga telah dijalankan. Ketebalan dan ketumpatan pembawa bagi setiap
lapisan telah diubah daripada 0.01 hingga 1.50 µm dan 1015 hingga 1020 cm-3. Keputusan simulasi menunjukkan bahawa kecekapan penukaran
tertinggi sebanyak 23.11% telah dicapai dengan x = 0.6. Ketebalan (ketumpatan
pembawa) bagi lapisan p- dan n- untuk sel suria In0.6Ga0.4N
adalah 0.01 (1020) dan 1.50 µm (1019 cm-3),
masing-masing. Keputusan simulasi juga menunjukkan bahawa kecekapan penukaran
adalah lebih sensitif terhadap perubahan ketebalan dan ketumpatan pembawa bagi
lapisan p-InxGa1-xN atas berbanding dengan lapisan n-InxGa1-xN
bawah. Selain itu, keputusan simulasi juga menunjukkan bahawa lapisan p-InxGa1-xN
yang lebih nipis bersama dengan ketumpatan pembawa yang lebih tinggi memberi
kecekapan penukaran yang lebih tinggi.
Kata kunci: Fotovolta; sebatian semikonduktor indium;
sel suria filem nipis; tenaga suria; III-V nitride
REFERENCES
Akter,
N., Miah, M.S., Matin, M.A. & Amin, N. 2019. Prospect of back contact for a
highly efficient ingan thin film solar cell from numerical analysis. In 1st
International Conference on Robotics, Electrical and Signal Processing
Techniques, ICREST 2019. ICREST. pp. 622-625.
Ayari,
T., Sundaram, S., Li, X., Alam, S., Bishop, C., El Huni, W., Jordan, M.B.,
Halfaya, Y., Gautier, S., Voss, P.L. & Salvestrini, J.P. 2018. Heterogeneous integration of thin-film
InGaN-based solar cells on foreign substrates with enhanced performance. ACS
Photonics 5(8): 3003-3008.
Belghouthi,
R. & Aillerie, M. 2019. Temperature dependence of InGaN/GaN Multiple
quantum well solar cells. Energy Procedia 157: 793-801.
Belghouthi,
R., Aillerie, M., Rached, A. & Mejri, H. 2019. Effect of temperature on
electronic and electrical behavior of InGaN double hetero-junction p-i-n solar
cells. Journal
of Materials Science: Materials in Electronics 30(4): 4231-4237.
Bi,
Z., Bacon-Brown, D., Du, F., Zhang, J., Xu, S., Li, P., Zhang, J., Zhan, Y.
& Hao, Y. 2018. An InGaN/GaN MQWs solar cell improved by a surficial gan
nanostructure as light traps. IEEE Photonics Technology Letters 30(1):
83-86.
Boumaour,
M., Sali, S., Kermadi, S., Zougar, L., Bahfir, A. & Chaieb, Z. 2019. High
efficiency silicon solar cells with back ZnTe layer hosting IPV effect: A numerical case study. Journal
of Taibah University for Science 13(1): 696-703.
Chouchen,
B., Gazzah, M.H., Bajahzar, A. & Belmabrouk, H. 2019. Numerical modeling of
InGaN/GaN p-i-n solar cells under temperature and hydrostatic pressure effects. AIP Advances 9(4): 045313.
Feng,
S.W., Lai, C.M., Tsai, C.Y., Su, Y.R. & Tu, L.W. 2013. Modeling of InGaN
p-n junction solar cells. Optical Materials Express 3(10): 1777.
Gupta,
N.D., Janyani, V. & Mathew, M. 2016. Light trapping in p-i-n superlattice
based InGaN/GaN Solar cells using photonic crystal. Optical and Quantum
Electronics 48(11): 1-17.
Hussain,
S., Prodhan, M.T. & Rahman, M.M. 2021. Simulation analysis to optimize the
performance of homojunction p-i-n In0.7Ga0.3N solar cell. Semiconductor
Physics, Quantum Electronics and Optoelectronics 24(2): 192-199.
Kim,
S.U. & Ra, Y.H. 2021. Modeling and epitaxial growth of homogeneous
long-InGaN nanowire structures. Nanomaterials 11(1): 9.
Kour,
R., Arya, S., Verma, S., Singh, A., Mahajan, P. & Khosla, A. 2020. Review - Recent
advances and challenges in Indium Gallium nitride (In x Ga 1-x N) materials for
solid state lighting. ECS Journal of Solid State Science and Technology 9(1): 015011.
Kuo,
Y.K. & Chang, J.Y. 2016. Effect of composition-graded interlayers in
double-heterostructure blue InGaN light-emitting diodes. Physica Status
Solidi (A) Applications and Materials Science 213(1): 154-157.
Levinshtein,
M.E., Rumyantsev, S.L. & Shur, M.S. 2001. Properties of Advanced
Semiconductor Materials: GaN, AIN, InN, BN, SiC, SiGe. New Jersey: John
Wiley & Sons. pp. 1-216.
Li,
X.Y., Shan, H.S. & Zheng, J. 2020. Statistical analysis of the
photoelectric characteristics for InGaN/GaN MQWs solar cells following proton irradiation. ECS Journal of Solid State Science and Technology 9(5): 055014.
Liu,
J., Liang, H., Xia, X., Abbas, Q., Liu, Y., Luo, Y., Zhang, Y., Yan, L., Han,
X. & Du, G. 2018. Anomalous Indium incorporation and optical properties of
high Indium content InGaN grown by MOCVD. Journal of Alloys and Compounds 735: 1239-1244.
Manzoor,
H.U., Zawawi, M.M., Pakhuruddin, M.Z., Ng, S.S. & Hassan, Z. 2021. High
conversion and
quantum efficiency Indium-rich p-InGaN/p-InGaN/n-InGaN solar cell. Physica
B: Condensed Matter 622: 413339.
Marouf,
Y., Dehimi, L., Bouzid, F., Pezzimenti, F. & Della Corte, F.G. 2018.
Theoretical design and performance of InxGa1-XN single junction solar cell. Optik 163: 22-32.
Marouf,
Y., Dehimi, L. & Pezzimenti, F. 2019. Simulation study for the current
matching optimization in In0.48Ga0.52N/In0.74Ga0.26N dual junction solar cells. Superlattices and Microstructures 130: 377-389.
McAllister,
A., Bayerl, D. & Kioupakis, E. 2018. Radiative and auger recombination
processes in Indium Nitride. Applied Physics Letters 112(25): 1-6.
Moustafa,
M.O. & Alzoubi, T. 2019. Numerical simulation of single junction ingan
solar cell by scaps. In Key Engineering Materials, edited by Korsunsky,
A.M. Bäch SZ: Trans Tech Publications Ltd. pp. 407-413.
Nath,
P., Biswas, A. & Nath, V. 2020. Performance optimization of solar cells
using non-polar, semi-polar and polar InGaN/GaN multiple quantum wells
alongside AlGaN blocking layers. Microsystem Technologies 27(1): 301-306.
Nawaz,
M. & Ahmad, A. 2012. A TCAD-based modeling of GaN/InGaN/Si solar cells. Semiconductor
Science and Technology 27(3): 035019.
Pal,
D. & Das, S. 2020. Numerical simulation of GaN/InGaN p-i-n solar cells: Role of interlayers in
promoting photovoltaic response. Optik 221: 165403.
Park,
J.H., Nandi, R., Sim, J.K., Um, D.Y., Kang, S., Kim, J.S. & Lee, C.R. 2018.
A III-nitride nanowire solar cell fabricated using a hybrid coaxial and
uniaxial InGaN/GaN multi quantum well nanostructure. RSC Advances 8(37):
20585-20592.
Rahman,
M.A., Islam, M.J., Islam, M.R. & Mahmud, M.P. 2021. Strain dependent
performance analysis of InGaN multi-junction solar cell. Transactions on
Electrical and Electronic Materials22:
833-842.
Shan,
H.S., Li, X.Y., Chen, B., Ma, S.F., Li, L. & Xu, B.S. 2019. Effect of indium composition on the
microstructural properties and performance of InGaN/GaN MQWs solar cells. IEEE
Access 7: 182573-182579.
Siddharth,
G., Garg, V., Sengar, B.S., Bhardwaj, R., Kumar, P. & Mukherjee, S. 2019.
Analytical study of performance parameters of InGaN/GaN multiple quantum well
solar cell. IEEE Transactions on Electron Devices 66(8): 3399-3404.
Tessarek,
C., Goldhahn, R., Sarau, G., Heilmann, M. & Christiansen, S. 2015.
Carrier-induced refractive index change observed by a whispering gallery mode
shift in GaN microrods. New Journal of Physics 17(8): 83047.
Tian,
M., Qian, Y.D., Zhang, C., Li, L., Yao, S.D., Ferguson, I.T., Talwar, D.N.,
Zhai, J.Y., Meng, D.H., He, K.Y. & Wan, L.Y. 2018. Investigation of high
Indium-composition InGaN/GaN heterostructures on ZnO grown by metallic organic
chemical vapor deposition. Optical Materials Express 8(10): 3184.
Uprety,
P., Subedi, I., Junda, M.M., Collins, R.W. & Podraza, N.J. 2019.
Photogenerated carrier transport properties in silicon photovoltaics. Scientific
Reports 9(1): 1-12.
Wang,
T., Wang, X., Chen, Z., Sun, X., Wang, P., Zheng, X., Rong, X., Yang, L., Guo,
W., Wang, D. & Cheng, J. 2018. High-mobility two-dimensional electron gas
at InGaN/InN heterointerface grown
by molecular beam epitaxy. Advanced Science 5(9): 1-7.
Wu,
S., Cheng, L. & Wang, Q. 2018. Effects of the unintentional background
concentration, Indium composition and defect density on the performance of
InGaN p-i-n homojunction solar cells. Superlattices
and Microstructures 119: 9-18.
Wu,
J., Walukiewicz, W., Yu, K.M., Shan, W., Ager Iii, J.W., Haller, E.E., Lu, H.,
Schaff, W.J., Metzger, W.K. & Kurtz, S. 2003. Superior radiation resistance
of in 1-XGa XN alloys: Full-solar-spectrum photovoltaic material system. Journal
of Applied Physics 94(10): 6477-6482.
Yin,
H., Qian, Y., Xie, L., Song, C., Wang, X., Chen, H., Wang, P., Zhou, G. &
Nötzel, R. 2019. Electrocatalytic activity of InN/InGaN quantum dots. Electrochemistry
Communications 106: 106514.
Zhang,
X., Wang, X., Xiao, H., Yang, C., Ran, J., Wang, C., Hou, Q. & Li, J. 2007.
Simulation of In0.65Ga0.35 N single-junction solar cell. Journal of Physics
D: Applied Physics 40(23): 7335-7338.
Zhang,
Y., Guo, R., Xu, S., Zhang, J., Zhao, S., Wang, H., Hu, Q., Zhang, C. &
Hao, Y. 2019. High-performance high electron mobility transistors with
GaN/InGaN composite channel and superlattice back barrier. Applied Physics
Letters 115(7): 072105.
Zinovchuk,
A.V. & Gryschuk, A.M. 2018. Alloy-assisted auger recombination in InGaN. Optical
and Quantum Electronics 50(12): 1-8.
*Corresponding
author; email: shashiong@yahoo.com
|