Sains Malaysiana 51(5)(2022): 1577-1586
http://doi.org/10.17576/jsm-2022-5105-25
A New Optimization Scheme for Robust Design
Modeling with Unbalanced Data
(Skema Pengoptimuman Baru bagi Pemodelan Reka Bentuk Teguh dengan Data Tak
Seimbang)
ISHAQ
BABA1, 2, HABSHAH MIDI1,*,
GAFURJAN IBRAGIMOV1 & SOHEL RANA3
1Department of Mathematics and Statistics,
Faculty of Science and Institute for Mathematical Research, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor Darul Ehsan, Malaysia
2Department of Mathematical Sciences,
Faculty of Science, Taraba State University Jalingo
P.M.B. 1164 Jalingo, Taraba State, Nigeria
3Department of mathematical and Physical
Sciences, East West University, Dhaka-1212, Bangladesh
Received: 5
February 2021/Accepted: 20 September 2021
Abstract
The Lin and Tu (LT) optimization scheme which is
based on mean squared error (MSE) objective function is the commonly used
optimization scheme for estimating the optimal mean response in robust dual
response surface optimization. The ordinary least squares (OLS) method is often
used to estimate the parameters of the process location and process scale
models of the responses. However, the OLS is not efficient for the unbalanced
design data since this kind of data make the errors of a model become
heteroscedastic, which produces large standard errors of the estimates. To
remedy this problem, a weighted least squares (WLS) method is put forward.
Since the LT optimization scheme produces a large difference between the
estimates of the mean response and the experimenter actual target value, we
propose a new optimization scheme. The OLS and the WLS are integrated in the
proposed scheme to determine the optimal solution of the estimated responses.
The results of the simulation study and real example indicate that the WLS is
superior when compared with the OLS method irrespective of the optimization
scheme used. However, the combination of WLS and the proposed optimization
scheme (PFO) signify more efficient results when compared to the WLS combined with
the LT optimization scheme.
Keywords: Optimization; robust design; unbalanced data; weighted least squares
Abstrak
Skema pengoptimuman Lin dan Tu (LT) yang
berdasarkan fungsi objektif min kuasadua ralat (MSE) sering digunakan dalam
skema pengoptimuman bagi menganggarkan min gerak balas optimum dalam
pengoptimuman permukaan berganda teguh. Kaedah kuasadua terkecil biasa (OLS)
sering digunakan untuk menganggarkan parameter model proses lokasi dan model
proses skala bagi gerak balas. Walau bagaimanapun, kaedah OLS tidak cekap bagi
data reka bentuk yang tak seimbang kerana data yang begini membuatkan ralat
model menjadi heteroskedastik dan menghasilkan penganggar ralat piawai besar.
Untuk mengatasi masalah ini, kaedah kuasadua terkecil berpemberat (WLS)
dicadangkan. Kami mencadangkan skema pengoptimuman baru disebabkan skema
pengoptimuman LT menghasilkan perbezaan yang besar antara penganggar min gerak
balas dan nilai sebenar sasaran penyelidik. Kaedah OLS dan WLS digabungkan
dalam skema yang dicadangkan bagi menentukan penyelesaian optimum bagi gerak
balas yang dianggarkan. Keputusan kajian simulasi dan contoh sebenar menunjukkan
bahawa kaedah WLS mengatasi kaedah OLS tanpa mengira skema pengoptimuman yang
digunakan. Walau bagaimanapun, gabungan WLS dan skema pengoptimuman yang
dicadang (PFO) menunjukkan keputusan yang lebih cekap apabila dibandingkan
dengan WLS yang digabungkan dengan skema pengoptimuman LT.
Kata kunci: Data tak seimbang; kuasadua terkecil
berpemberat; pengoptimuman; reka bentuk teguh
REFERENCES
Box, G.E. & Draper, N.R. 1987. Empirical
Model-Building and Response Surfaces. New York: John Wiley & Sons.
Boylan, G.L. & Cho, B.R. 2013. Comparative studies on the
high-variability embedded robust parameter design from the perspective of
estimators. Computers & Industrial Engineering 64(1):
442-452.
Chelladurai, S.J.S., Murugan, K., Ray, A.P.,
Upadhyaya, M., Narasimharaj, V. & Gnanasekaran, S. 2021. Optimization of process parameters
using response surface methodology: A review. Materials Today:
Proceedings 37: 1301-1304.
Cho, B.R. & Park, C. 2005. Robust design modeling and
optimization with unbalanced data. Computers & Industrial Engineering 48(2):
173-180.
Copeland, K.A. & Nelson, P.R. 1996. Dual response
optimization via direct function minimization. Journal of Quality Technology 28(3): 331-336.
Ding, R., Lin, D.K. & Wei, D. 2004. Dual-response
surface optimization: A weighted MSE approach. Quality Engineering 16(3): 377-385.
Dong, S. 2006. Methods
for Constrained Optimization. Massachusetts: Massachusetts Institute of Technology.
Ghalanos, A. & Theussl, S. 2012. Rsolnp: General
non-linear optimization using augmented Lagrange multiplier method. R
package version, 1.
Goethals, P.L. & Cho, B.R. 2011. Solving the optimal
process target problem using response surface designs in heteroscedastic
conditions. International Journal of Production Research 49(12): 3455-3478.
Jeong, I.J., Kim, K.J. & Chang, S.Y. 2005. Optimal
weighting of bias and variance in dual response surface optimization. Journal
of Quality Technology 37(3): 236-247.
Kackar, R.N. 1985. Off-line quality control, parameter
design, and the Taguchi method. Journal of Quality Technology 17(4):
176-188.
Kim, K.J. & Lin, D.K.J. 1998. Dual response surface
optimization: A fuzzy modeling approach. Journal of Quality Technology 30(1):
1-10.
Lee,
S.B. & Park, C. 2006. Development of robust design optimization using
incomplete data. Computers & Industrial Engineering 50(3): 345-356.
Lee, D.H., Yang, J.K. & Kim, K.J. 2018. Dual-response
optimization using a patient rule induction method. Quality Engineering 30(4):
610-620.
Lin, D.K. & Tu, W. 1995. Dual response surface
optimization. Journal of Quality Technology 27(1): 34-39.
Myers, R.H. & Montgomery, D.C. 1995. Response Surface Methodology: Process and
Product Optimization using Designed Experiments.
https://doi.org/10.2307/1270613
Midi, H. & Aziz, N.A. 2019. High breakdown estimator
for dual response optimization in the presence of outliers. Sains Malaysiana 48(8): 1771-1776.
Midi, H., Ismaeel, S.S., Arasan, J.
& Mohammed, M.A. 2021. Simple and fast generalized-M (GM) estimator and its
application to real data set. Sains Malaysiana 50(3): 859-867.
Nair, V.N., Abraham, B., MacKay, J., Box, G., Kacker,
R.N., Lorenzen, T.J., Lucas, J.M., Myers, R.H., Vining, G.G., Nelder, J.A.
& Phadke, M.S. 1992. Taguchi’s parameter design: A panel discussion. Technometrics 34(2): 127-161.
Park, C. & Cho, B.R. 2003. Development of robust
design under contaminated and non-normal data. Quality Engineering 15(3): 463-469.
Park,
C. & Leeds, M. 2016. A highly efficient robust design under data
contamination. Computers & Industrial Engineering 93: 131-142.
Park, C., Ouyang, L., Byun, J.H. & Leeds, M. 2017. Robust
design under normal model departure. Computers & Industrial
Engineering 113: 206-220.
Rana, S., Midi, H. & Imon, A.R.
2012. Robust wild bootstrap for stabilizing the variance of parameter estimates
in heteroscedastic regression models in the presence of outliers. Mathematical
Problems in Engineering 2012: 730328.
Shin, D.K., Gürdal, Z. & Griffin, O.H.J. 1990. A
penalty approach for nonlinear optimization with discrete design variables. Engineering
Optimization+ A35 16(1): 29-42.
Taguchi, G. & Wu, Y.I. 1980. Introduction to Off-Line
Quality Control Systems. Nagoyo: Central Japan
Quality Control Association.
Vining, G.G. & Myers, R.H. 1990. Combining taguchi
and response surface philosophies: A dual response approach. Journal of
Quality Technology 22(1): 38-45.
Wan, Z., Zhang, S.J. & Wang, Y.L. 2009. Penalty
algorithm based on conjugate gradient method for solving portfolio management
problem. Journal of Inequalities and Applications 2009: Article ID.
970723.
Ye,
Y. 1989: Solnp users' guide -a nonlinear optimization
program in matlab. Department of Management Sciences,
College of Business Administration, University of Iowa.
*Corresponding author; email:
habshahmidi@gmail.com
|