Sains Malaysiana 51(6)(2022):
1667-1676
Expression of the Recombinant Enterocin E-760 in Pichia pastoris X33 and Its Antimicrobial Activity
towards Listeria monocytogenes
(Pengekspresan Rekombinan Enterocin E-760 pada Pichia pastoris X33 dan Aktiviti Antimikrob terhadap Listeria monocytogenes)
KHANH HOANG VIET NGUYEN1,*, LAN ANH TO1 & KIM
PHUONG LUONG2
1Department of Molecular Biotechnology, Institute
of New Biotechnology,
Academy of Military of
Science and Technology, 17 Hoang Sam, Cau Giay, Hanoi, Vietnam
2 Faculty of Biology, Hanoi VNU University of Science,
Vietnam National University, 334 Nguyen Trai, Thanh
Xuan, Hanoi, Vietnam
Received: 4 April 2021/Accepted:
25 November 2021
Abstract
Bioactive compounds such as bacteriocins have become potent and promising alternatives
to chemical food preservatives for extending food shelf-life and eliminating food
loss from
microbial spoilage. Enterocin E-760 is a specific bacterocin belonging to class II
that possesses broad
spectrum antibacterial activity against both Gram-negative
and Gram-positive bacteria. In this
study, the enterocin E-760 gene was fused to a
His-tag and cloned into the expression vector, pPICzαA, and
transformed into Escherichia coli DH5α cells. The recombinant
plasmid was isolated, linearised and transformed into competent Pichia pastoris X33 cells using electroporation. The Pichia transformants
were determined using PCR and expressed under
methanol induction with the highest antibacterial activity of culture supernatants reaching 40 AU/mL. Enterocin E-760 exhibited a molecular
weight of approximately 5.5 kDa and was detected directly on a Tricine SDS-PAGE gel containing Listeria monocytogenes ATCC 35152 after ethanol precipitation at a concentration ranging from 30% to 70%. This study represented the initial
stages of research into using
enterocin as a biopreservative in food processing.
Keywords: Antibacterial
peptide; bacteriocin; enterocin E-760; food
preservation
Abstrak
Sebatian bioaktif seperti bakteriosin telah menjadi
alternatif yang kuat dan berpotensi menggantikan pengawet makanan kimia untuk
memanjangkan jangka hayat makanan dan menghapuskan kerosakan makanan daripada
tindakan mikrob. Enterosin E-760 ialah bakteriosin khusus yang tergolong dalam kelas II yang mempunyai aktiviti antibakteria dengan spektrum yang luas terhadap kedua-dua bakteria Gram-negatif dan Gram-positif. Dalam kajian ini, gen enterosin E-760 telah digabungkan dengan penanda His lalu diklonkan ke dalam vektor pengekspresan, pPICzαA dan ditransformasi ke dalam sel Escherichia coli DH5α. Plasmid rekombinan telah dipencil, dilinear dan ditransformasikan ke dalam sel kompeten Pichia pastoris X33 melalui elektroporasi. Transforman Pichia ditentukan menggunakan PCR
dan diekspreskan melalui induksi menggunakan metanol menghasilkan aktiviti antibakteria bagi supernatan kultur yang tertinggi mencapai 40 AU/mL. Enterosin E-760 mempamerkan berat molekul kira-kira 5.5 kDa dan dikesan secara langsung pada gel SDS-PAGE Trisin yang mengandungi Listeria monocytogenes ATCC 35152 selepas pemendakan etanol pada kepekatan antara 30% hingga 70%. Kajian ini merupakan penyelidikan pada peringkat awal menggunakan enterosin sebagai biopengawet dalam pemprosesan makanan.
Kata kunci: Bakteriosin; enterosin E-760; pengawetan makanan; peptida antibakteria
References
Aguayo, M.D.C.L., Burgos, M.J.G., Pulido, R.P.,
Gálvez, A. & López, R.L. 2016. Effect of different activated coatings containing enterocin AS-48 against Listeria
monocytogenes on apple cubes. Innovative
Food Science & Emerging Technologies 35: 177-183.
Ananou, S., Maqueda, M., Martínez-Bueno, M. & Gálvez, A. 2005. Control of Staphylococcus aureus in sausages by enterocin AS-48. Meat Science 71(3): 549-556.
Arbulu, S., Jiménez, J.J., Gútiez, L., Cintas, L.M., Herranz,
C. & Hernández, P.E. 2015. Cloning and expression of
synthetic genes encoding the broad antimicrobial spectrum bacteriocins SRCAM
602, OR-7, E-760, and L-1077, by recombinant Pichia pastoris. BioMed Research International 2015: 767183.
Ausubel, F.M., Brent, R.,
Kingston, R.E., Moore, D.D., Seidman, J.G., Smith, J.A. & Struhl, K. 1994. Current Protocols in Molecular Biology. New York: John Wiley & Sons.
Bali, V., Panesar, P.S., Bera, M.B. & Kennedy, J.F. 2016.
Bacteriocins: Recent trends and potential applications. Critical Reviews in Food Science and Nutrition 56(5): 817-834.
Borrero, J., Kunze, G.,
Jiménez, J.J., Böer, E., Gútiez,
L., Herranz, C., Cintas, L.M. & Hernández, P.E. 2012. Cloning, production, and functional expression of the
bacteriocin enterocin A, produced by Enterococcus
faecium T136, by the yeasts Pichia pastoris, Kluyveromyces lactis, Hansenula polymorpha,
and Arxula adeninivorans. Applied and Environmental Microbiology 78(16): 5956-5961.
Carrique-Mas, J.J. & Bryant,
J. 2013. A review of foodborne bacterial and parasitic zoonoses in Vietnam. Ecohealth 10(4):
465-489.
Dimitrijević, R., Stojanović, M., Živković,
I., Petersen, A., Jankov, R.M., Dimitrijević,
L. & Gavrović-Jankulović,
M. 2009. The identification of a low molecular mass bacteriocin, rhamnosin A, produced by Lactobacillus rhamnosus strain 68. Journal of Applied Microbiology 107(6): 2108-2115.
Dortu, C., Huch, M., Holzapfel, W., Franz. C.M.A.P. & Thonart, P. 2008.
Anti‐listerial activity of
bacteriocin‐producing Lactobacillus curvatus CWBI‐B28 and Lactobacillus sakei CWBI‐B1365 on raw beef and poultry meat. Letters in Applied Microbiology 47(6): 581-586.
Gram, L., Ravn, L., Rasch, M., Bruhn, J.B., Christensen, A.B. & Givskov, M. 2002. Food
spoilage - Interactions between food spoilage bacteria. International Journal of Food Microbiology 78(1-2): 79-97.
Grande, M.J., Lucas, R., Abriouel, H., Valdivia, E., Omar, N.B., Maqueda, M., Martínez-Bueno, M., Martínez-Cañamero, M. & Gálvez, A. 2006. Inhibition of
toxicogenic Bacillus cereus in rice-based foods by enterocin AS-48. International Journal of Food
Microbiology 106(2):
185-194.
Grande, M.J., Lucas, R.,
Valdivia, E., Abriouel, H., Maqueda,
M., Omar, N.B., Martínez-Cañamero, M. & Gálvezi, M. 2005. Stability
of enterocin AS-48 in fruit and vegetable juices. Journal of Food Protection 68(10): 2085-2094.
Gutiérrez, J., Larsen,
R., Cintas, L.M., Kok, J. & Hernández, P.E. 2006. High-level heterologous production and functional expression
of the sec-dependent enterocin P from Enterococcus
faecium P13 in Lactococcus lactis. Applied Microbiology and Biotechnology 72(1): 41-51.
Invitrogen. 2010. User
Manual - EasySelectTM Pichia Expression
Kit for Expression of Recombinant Proteins using pPICZ and pPICZα in Pichia pastoris. United
States: Thermo Fisher Scientific.
Karbalaei, M., Rezaee, S.A. & Farsiani,
H. 2020. Pichia pastoris: A highly successful expression system for
optimal synthesis of heterologous proteins. Journal
of Cellular Physiology 235(9): 5867-5881.
Krainer, F.W., Dietzsch, C., Hajek, T., Herwig, C., Spadiut,
O. & Glieder, A. 2012.
Recombinant protein expression in Pichia pastoris strains with an
engineered methanol utilization pathway. Microbial
Cell Factories 11(1): 1-14.
Li, Z., Cheng, Q., Guo,
H., Zhang, R. & Si, D. 2020. Expression of hybrid
peptide EF-1 in Pichia pastoris, its purification, and antimicrobial
characterization. Molecules 25(23): 5538.
Line, J.E., Svetoch, E.A., Eruslanov, B.V., Perelygin, V.V., Mitsevich, E.V., Mitsevich, I.P., Levchuk,
V.P., Svetoch, O.E., Seal, B.S., Siragusa, G.R. & Stern, N.J. 2008. Isolation and
purification of enterocin E-760 with broad
antimicrobial activity against Gram-positive and Gram-negative bacteria. Antimicrobial Agents and Chemotherapy 52(3): 1094-1100.
Lucas, R., Grande,
M.A.J., Abriouel, H., Maqueda,
M., Omar, N.B., Valdivia, E., Martínez-Cañamero, M. & Gálvez, A.
2006. Application of the broad-spectrum bacteriocin enterocin AS-48 to inhibit Bacillus coagulans in canned
fruit and vegetable foods. Food and
Chemical Toxicology 44(10):
1774-1781.
Lv, X., Ma, H., Sun,
M., Lin, Y., Bai, F., Li, J. & Zhang, B. 2018. A novel bacteriocin DY4-2
produced by Lactobacillus plantarum from cutlassfish and its application
as bio-preservative for the control of Pseudomonas fluorescens in fresh
turbot (Scophthalmus maximus) fillets. Food Control 89: 22-31.
Meade, E., Slattery,
M.A. & Garvey, M. 2020. Bacteriocins, potent antimicrobial peptides and the
fight against multi drug resistant species: Resistance is futile? Antibiotics 9(1): 32.
Mesa-Pereira, B.,
Rea, M.C., Cotter, P.D., Hill, C. & Ros,
R.P. 2018. Heterologous expression of biopreservative bacteriocins with a view to low cost production. Frontiers in Microbiology 9: 1654.
Nelson, M., Raschke, E. & McClelland, M. 1993. Effect of
site-specific methylation on restriction endonucleases and DNA modification
methyltransferases. Nucleic Acids
Research 21(13): 3139.
Odeyemi, O.A., Alegbeleye, O.O., Strateva, M. & Stratev, D. 2020.
Understanding spoilage microbial community and spoilage mechanisms in foods of
animal origin. Comprehensive Reviews in
Food Science and Food Safety 19(2):
311-331.
Olejnik-Schmidt, A.K.,
Schmidt, M.T., Sip, A., Szablewski, T. & Grajek, W. 2014. Expression
of bacteriocin divercin AS7 in Escherichia coli and its functional analysis. Annals of
Microbiology 64(3):
1197-1202.
Pedro, A., Oppolzer, D., Bonifacio, M. & Maia,
C. 2015. Evaluation of MutS and Mut+ Pichia
pastoris strains for membrane-bound catechol-O-methyltransferase
biosynthesis. Applied Biochemistry and
Biotechnology 175(8):
3840-3855.
Quezada-Rivera,
J., Soria-Guerra, R., Pérez-Juárez, F., Martínez-González, L., Valdés-Rodríguez, S.E.,
Vasco-Méndez, S.E. & Morales-Domínguez, J.F. 2019. Heterologous
expression of bacteriocin E-760 in Chlamydomonas reinhardtii and functional analysis. Phyton 88(1):
25.
Reis, J., Paula, A., Casarotti, S. & Penna, A.L.B. 2012. Lactic acid
bacteria antimicrobial compounds: Characteristics and applications. Food Engineering Reviews 4(2): 124-140.
Schägger, H. 2006.
Tricine–SDS-PAGE. Nature Protocols 1(1): 16-22.
Shin, J.M., Gwak, J.W., Kamarajan, P., Fenno, J.C., Rickard, A.H. & Kapila, Y.L. 2016. Biomedical applications of nisin. Journal of Applied Microbiology 120(6): 1449-1465.
Silva, C.C., Silva, S.P. & Ribeiro, S.C. 2018. Application of bacteriocins and
protective cultures in dairy food preservation. Frontiers in Microbiology 9:
594.
Todorov, S.D. & Dicks, L.M. 2007. Bacteriocin production by Lactobacillus pentosus ST712BZ isolated from boza. Brazilian
Journal of Microbiology 38(1):
166-172.
Thuan, H.V., Nguyen, N.T.T., Vinh, L., Ninh, H.L., Huy, Q.N., Tuan, V.L. &
Nuorti, P.J. 2017. Epidemiologic characteristics of foodborne outbreaks in southern Vietnam, 2009-2013. Journal of
Microbiology and Infectious Diseases 7(1): 13-20.
*Corresponding author;
email: hoangviet1015@gmail.com
|