Sains Malaysiana 51(6)(2022): 1725-1732

http://doi.org/10.17576/jsm-2022-5106-10

 

(+)-Neocadambine A and (-)-Nauclederine Isolated from the Bark of Neolamarckia cadamba (Rubiaceae) as Natural Advanced Glycation End Products (AGEs) Inhibitors

((+)-Neocadambine A dan (-)-Nauclederine Diasingkan daripada Kulit Neolamarckia cadamba (Rubiaceae) sebagai Perencat Produk Akhir Glisasi Lanjutan Semula Jadi (AGEs))

 

NOOR AIMI OTHMAN1, SOOK YEE LIEW2,*, PATRICIA BLANCHARD3, SÉVERINE DERBRÉ3, SOON-LIM CHONG1, ABDUL MANAF ALI4 & KHALIJAH AWANG1,5

 

1Department of Chemistry, Faculty of Science, Universiti Malaya, 50603 Kuala Lumpur, Federal Territory, Malaysia

2Chemistry Division, Centre for Foundation Studies in Science, Universiti Malaya, 50603 Kuala Lumpur, Federal Territory, Malaysia

3Sonas, EA921, Department of Pharmacy, Faculty of Health Sciences, University of Angers,

16 Bd Daviers, 49045, Angers cedex 01, France

4Faculty of Bioresources and Food Industry, Universiti Sultan Zainal Abidin, 22200 Besut, Terengganu Darul Iman, Malaysia

5Centre for Natural Products and Drug Discovery (CENAR), Universiti Malaya, 50603 Kuala Lumpur, Federal Territory, Malaysia

 

Received: 29 March 2021/Accepted: 25 October 2021

ABSTRACT

The phytochemical study on the dichloromethane extract of Neolamarckia cadamba (Roxb.) Bosser has afforded two indole alkaloids, (+)-neocadambine A (1) and (-)-nauclederine (2). Their structures were confirmed by extensive spectroscopic analysis and by comparing with the reported data. (+)-Neocadambine A (1) and (-)-nauclederine (2) exhibited potent inhibition activity of advanced glycation end products (AGEs) with IC50 values of 1.2 and 0.95 mM, respectively, while the latter was almost two times more potent than the standard, aminoguanidine (1.8 mM). This is the first report on the compounds isolated from this plant with AGEs inhibition activity. In addition, (-)-nauclederine (2) was isolated for the first time in the genus of Neolamarckia. Complete 1H-NMR and 13C-NMR of compound 2 were also reported.

 

Keywords: Advanced glycation end products; indole alkaloid; (-)-nauclederine; (+)-neocadambine A; Neolamarckia cadamba

 

ABSTRAK

Kajian fitokimia ke atas ekstrak dikloromethana bagi Neolamarckia cadamba (Roxb.) Bosser telah menghasilkan dua alkaloid indola, (+)-neocadambine A (1) dan (-)-nauclederine (2). Strukturnya dikenal pasti melalui pelbagai analisis spektroskopi dan perbandingan dengan data yang telah dilaporkan. (+)-Neocadambine A (1) dan (-)-nauclederine (2) menunjukkan aktiviti perencatan kuat terhadap produk akhir glisasi lanjutan (AGE) dengan nilai IC50 masing-masing 1.2 dan 0.95 mM sementara (-)-nauclederine (2) hampir dua kali ganda lebih kuat daripada piawai, aminoguanidine (1.8 mM). Ini adalah laporan pertama mengenai sebatian yang diasingkan daripada tumbuhan ini dengan aktiviti perencatan terhadap AGE. Selain itu, (-)-nauclederine (2) diasingkan untuk pertama kalinya dalam genus Neolamarckia. 1H-NMR dan 13C-NMR yang lengkap bagi sebatian 2 juga dilaporkan.

 

Kata kunci: Alkaloid indola; (-)-nauclederine; (+)-neocadambine A; Neolamarckia cadamba; produk akhir glisasi lanjutan

 

REFERENCES

Ahmed, F., Rahman, S., Ahmed, N., Hossain, M., Biswas, A., Sarkar, S., Banna, H., Khatun, A., Chowdhury, M.H. & Rahmatullah, R. 2011. Evaluation of Neolamarckia cadamba (Roxb.) Bosser leaf extract on glucose tolerance in glucose-induced hyperglycemic mice. African Journal of Traditional, Complementary, and Alternative Medicines 8(1): 79-81.

Alam, M.A., Subhan, N., Chowdhury, S.A., Awal, M.A., Mostofa, M., Rashid, M.A., Hasan, M.H., Nahar, L. & Satyajit, D.S. 2011. Anthocephalus cadamba (Roxb.) Miq., Rubiaceae, extract shows hypoglycemic effect and eases oxidative stress in alloxan-induced diabetic rats. Revista Brasileira de Farmacognosia 21(1): 155-164.

Boisard, S., Ray, A.M.L., Gatto, J., Aumond, M.C., Blanchard, P., Derbré, S., Flurin, C. & Pascal, R. 2014. Chemical composition, antioxidant and anti-ages activities of a french poplar type propolis. Journal of Agricultural and Food Chemistry 62(6): 1344-1351.

Brownlee, M. 2001. Biochemistry and molecular cell biology of diabetic complications. Nature 414(6865): 813-820.

de Leeuw, K., Kallenberg, C. & Bijl, M. 2005. Accelerated atherosclerosis in patients with systemic autoimmune diseases. Annals of the New York Academy of Sciences 1051(1): 362-371.

DeGroot, J. 2004. The AGE of the matrix: Chemistry, consequence and cure. Current Opinion in Pharmacology 4(3): 301-305.

Derbré, S., Gatto, J., Pelleray, A., Coulon, L., Séraphin, D. & Richomme, P. 2010. Automating a 96-well microtiter plate assay for identification of AGEs inhibitors or inducers: Application to the screening of a small natural compounds library. Analytical and Bioanalytical Chemistry 398(4): 1747-1758.

Elosta, A., Ghous, T. & Ahmed, N. 2012. Natural products as anti-glycation agents: Possible therapeutic potential for diabetic complications. Current Diabetes Reviews 8(2): 92-108.

Grillo, M.A. & Colombatto, S. 2008. Advanced glycation end-products (AGEs): Involvement in aging and in neurodegenerative diseases. Amino Acids 35(1): 29-36.

Habtemariam, S. 2019. Medicinal Foods as Potential Therapies for Type-2 Diabetes and Associated Diseases: Chemical and Pharmacological Evidences for Coffee as a Modulator of Type 2 Diabetes and Metabolic Syndrome. New York: Academic Press.

Hu, X.J., Di, Y.T., Wang, Y.H., Kong, L.Y., Gao, S., Li, C.S., Liu, H.Y., He, H., Ding, J., Xie, H. & Hao, X. 2009. Carboline alkaloids from Trigonostemon lii. Planta Medica 75(10): 1157-1161.

Jandeleit-Dahm, K. & Cooper, M.E. 2008. The role of AGEs in cardiovascular disease. Current Pharmaceutical Design 14(10): 979-986.

Kurien, B.T., Hensley, K., Bachmann, M. & Scofield, R.H. 2006. Oxidatively modified autoantigens in autoimmune diseases. Free Radical Biology and Medicine 41(4): 549-556.

Luevano-Contreras, C. & Chapman-Novakofski, K. 2010. Dietary advanced glycation end products and aging. Nutrients 2(12): 1247-1265.

Martins, D. & Nunez, C.V. 2015. Secondary metabolites from Rubiaceae species. Molecules 20(7): 13422-13495.

McLean, S., Dmitrienko, G.I. & Szakolcai, A. 1976. Constituents of Naucleadiderrichii. Part VII. Synthesis of nauclederine, naucleonine, and naucleonidine; spectroscopic evidence for the structures of 3α-dihydrocadambine and two other constituents. Canadian Journal of Chemistry 54(8): 1262-1277.

Murray, D.G., Szakolcai, A. & McLean, S. 1972. The constituents of Naucleadiderrichii. Part III. Indole-pyridine alkaloids. Canadian Journal of Chemistry 50(10): 1486-1495.

Pandey, A. & Negi, P.S. 2016. Traditional uses, phytochemistry and pharmacological properties of Neolamarckia cadamba: A review. Journal of Ethnopharmacology 181(1): 118-135.

Peyroux, J. & Sternberg, M. 2006. Advanced glycation endproducts (AGEs): Pharmacological inhibition in diabetes. Pathologie-Biologie 54(7): 405-419.

Poulsen, M.W., Hedegaard, R.V., Andersen, J.M., Courten, B.C., Bügel, S., Nielsen, J., Skibsted, L.H. & Dragsted, L.O. 2013. Advanced glycation endproducts in food and their effects on health. Food and Chemical Toxicology 60: 10-37.

Qureshi, A.K., Mukhtar, M.P., Hirasawa, Y., Hosoya, T., Nugroho, A.E., Morita, H., Shirota, O., Mohamad, K., Hadi, A.H.A., Litaudon, M. & Awang, K. 2011. Neolamarckines A and B, new indole alkaloids from Neolamarckia cadamba. Chemical and Pharmaceutical Bulletin (Tokyo) 59(2): 291-293.

Reddy, V.P. & Beyaz, A. 2006. Inhibitors of the maillard reaction and age breakers as therapeutics for multiple diseases. Drug Discovery Today 11(13-14): 646-654.

Séro, L., Sanguinet, L., Blanchard, P., Dang, B.T., Morel, M., Richomme, P., Séraphin, D. & Derbré, S. 2013. Tuning a 96-well microtiter plate fluorescence-based assay to identify AGE inhibitors in crude plant extracts. Molecules (Basel, Switzerland) 18(11): 14320-14339.

Silva, D.H.S., Castro-Gamboa, L. & Bolzani, V.S. 2010. Plant diversity from Brazilian Cerrado and Atlantic Forest as a tool for prospecting potential therapeutic drugs. Comprehensive Natural Products II 3(1): 95-133.

Singh, R., Barden, A., Mori, T. & Beilin, L. 2001. Advanced glycation end-products: A review. Diabetologia 44(2): 129-146.

Sultana, N., Islam, M.T., Alencar, M.V.O.B.D., Silva, S.W.C., Chowdhury, M.U., Melo-Cavalcante, A.A.C. & Freitas, R.M.D. 2015. Phyto-pharmacological screenings of two Rubiaceae family plants. African Journal of Pharmacy and Pharmacology 9(31): 775-782.

Takeuchi, M. & Yamagishi, S. 2008. Possible involvement of advanced glycation end-products (AGEs) in the pathogenesis of Alzheimer's disease. Current Pharmaceutical Design 14(10): 973-978.

Thorpe, S.R. & Baynes, J.W. 1996. Role of the Maillard reaction in diabetes mellitus and diseases of aging. Drugs Aging 9(2): 69-77.

Verma, R., Chaudhary, F. & Singh, A. 2018. Neolamarckia cadamba: A comprehensive pharmacological. Global Journal of Pharmacy & Pharmaceutical Sciences 6(4): 555691.

Vlassara, H. & Uribarri, J. 2014. Advanced glycation end products (AGE) and diabetes: Cause, effect, or both? Current Diabetes Reports 14(1): 453-461.

Wada, R. & Yagihashi, S. 2005. Role of advanced glycation end products and their receptors in development of diabetic neuropathy. Annals of the New York Academy of Sciences 1043(1): 598-604.

Wang, B., Liu, L., Chen, Y.Y., Li, Q., Li, D., Liu, Y.P. & Luo, X.D. 2015. Monoterpenoid indole alkaloids from catharanthus roseus cultivated in Yunnan. Natural Product Communications 10(12): 1934578X1501001217.

Wolffenbuttel, B.H., Giordano, D., Founds, H.W. & Bucala, R. 1996. Long-term assessment of glucose control by haemoglobin-AGE measurement. Lancet 347(9000): 513-515.

Yuan, H.L., Zhao, Y.L., Qin, X.J., Liu, Y.P., Yu, H.F., Zhu, P.F., Jin, Q., Yang, X.W. & Luo, X.D. 2020. Anti-inflammatory and analgesic activities of Neolamarckia cadamba and its bioactive monoterpenoid indole alkaloids. Journal of Ethnopharmacology 260(1): 113103.

 

*Corresponding author; email: joeyliew5382@um.edu.my

 

 

previous