Sains Malaysiana 51(6)(2022):
1733-1751
http://doi.org/10.17576/jsm-2022-5106-11
Study on the Anti-Inflammatory Mechanism of Volatile Components of Hebei Aster tataricus Before and After Honey-Fried Based on Gas Chromatography-Mass Spectrometry and Network Pharmacology
(Kajian Mekanisme Anti-Radang Komponen Meruap Hebei Aster tataricus Sebelum dan Selepas Digoreng dengan Madu Berdasarkan Kromatografi
Gas-Spektrometri Jisim dan Farmakologi Rangkaian)
LIJUAN
LV1, XIANGPEI WANG2, HONGMEI WU1,*, KE
ZHONG1 & FENG XU1
1Department of Pharmacognosy, Guizhou
University of Traditional Chinese Medicine,
Guiyang, Guizhou,
China
2National Medical College, Guizhou Minzu University, Guiyang, Guizhou, China
Received: 27 July
2021/Accepted: 2 November 2021
Abstract
Aster tataricus (AT) and honey-fried Aster tataricus (HAT) have a significant effect on relieving
cough and reducing sputum, both of which contain many volatile components.
Studies have shown that the volatile components of AT and HAT may have an
anti-inflammatory effect, but the mechanism is unclear. This study aimed to
analyze the daodi herb of Hebei AT and HAT
qualitatively and quantitatively using gas chromatography-mass spectrometry and
systematically explored the similarities and differences of anti-inflammatory
molecular mechanisms of volatile components Hebei AT and HAT by using network
pharmacology. These results indicate that there are significant differences in
volatile compositions and percentage contents between AT and HAT. Moreover, the
anti-inflammatory mechanism of volatile components of Hebei AT and HAT have
more prominent similarities and fewer differences. AT and HAT's similar potential active components such as humulene,γ-muurolene,
α-phellandrene,
and acetic acid were nine. The similar key gene targets were forty-seven,
such as CAT, GAPDH, HMOX1, and CTH. The potential active ingredients peculiar
to HAT were furfural, β-elemene, methyleugenol, and unique targets of EIF6 and PKIA. It
suggests that HAT had its characteristics in clinical anti-inflammatory. Their
active anti-inflammatory components and percentage contents were different, and
HAT was higher than that of AT. The anti-inflammatory effect of volatile
components of HAT may be better than that of AT. These results provide a theoretical
basis for the study of the anti-inflammatory molecular mechanism of AT and HAT.
Keywords:
Anti-inflammatory; Aster tataricus;
honey-fried; volatile components
Abstrak
Aster tataricus (AT) dan Aster tataricus (HAT) goreng madu mempunyai kesan yang ketara bagi melegakan batuk dan mengurangkan kahak, kedua-duanya mengandungi banyak komponen yang meruap. Kajian telah menunjukkan bahawa komponen meruap AT dan HAT mungkin mempunyai kesan anti-radang, tetapi mekanismenya tidak jelas. Kajian ini bertujuan untuk menganalisis herba daodi Hebei AT dan HAT secara kualitatif dan kuantitatif menggunakan kromatografi gas-spektrometri jisim dan secara sistematik bagi meneroka persamaan dan perbezaan mekanisme molekul anti-radang komponen meruap Hebei AT dan HAT dengan menggunakan farmakologi rangkaian. Keputusan menunjukkan bahawa terdapat perbezaan yang signifikan dalam komposisi komponen meruap dan kandungan peratusan antara AT dan HAT. Selain itu, mekanisme anti-radang komponen yang meruap pada Hebei AT dan HAT mempunyai lebih banyak persamaan dan hanya sedikit perbezaan. Komponen sama aktif berpotensi AT dan HAT seperti humulena, γ-muurolene,
α-phellandrene dan asid asetik adalah sembilan. Sasaran gen utama yang sama ialah empat puluh tujuh, seperti CAT, GAPDH, HMOX1 dan CTH. Bahan aktif yang berpotensi khusus untuk HAT ialah furfural, β-elemene, metileugenol dan sasaran unik EIF6 dan PKIA. Ia menunjukkan bahawa HAT mempunyai ciri-cirinya dalam anti-radang klinikal. Komponen anti-radang aktif dan kandungan peratusannya berbeza dan HAT lebih tinggi daripada AT. Kesan anti-radang komponen meruap pada HAT lebih baik daripada AT. Keputusan ini memberikan asas teori untuk kajian mekanisme molekul anti-radang AT dan
HAT.
Kata kunci: Anti-radang; Aster tataricus;
goreng madu; komponen yang meruap
REFERENCES
Bai,
Z.Q., Yao, C.S., Zhu, J.L. & Xie, Y.Y.
2021. Anti-tumor drug discovery based on natural product β-elemene: Anti-tumor mechanisms
and structural modification. Molecules 26(6): 1499.
Bonjardim, L.R., Cunha,
E.S., Guimarães, A.G., Santana, M.F., Oliveira, M.G.,
Serafini, M.R., Araújo, A.A., Antoniolli, Â.R.,
Cavalcanti, S.C., Santos, M.R. & Quintans-Júnior, L.J. 2012. Evaluation of
the anti-inflammatory and antinociceptive properties of p-cymene in mice. Zeitschrift für Naturforschung C 67(1-2): 15-21.
Chauhan,
A.S., Kumar, M., Chaudhary, S., Patidar, A., Dhiman, A., Sheokand, N., Malhotra, H., Raje, C.I. & Raje, M. 2017. Moonlighting glycolytic protein glyceraldehyde-3-phosphate dehydrogenase (GAPDH): An evolutionarily conserved plasminogen receptor
on mammalian cells. The Federation of American Societies for Experimental Biology Journal 31(6): 2638-2648.
Dutta,
P., Sahu, R.K., Dey, T., Lahkar, M.D., Manna,
P. & Kalita, J.
2019. Beneficial role
of insect-derived bioactive components against inflammation
and its associated complications (colitis
and arthritis) and cancer. Chemico-Biological Interactions 313(2019): 108824.
Ebtehal, E.
2011. Anti-inflammatory and antifibrotic effects
of methyl palmitate. Toxicology and Applied Pharmacology 254(3): 238-244.
Fang,
H.Y., Shan, G.W., Qin, G.F., Zhen, L., Li, M.H. & Hao, L.J. 2012. Advances on chemical components and pharmacological actions of Aster tataricus. Medical Research and Education 29(5):
73-77.
Feng,
T., Feilong, C., Xiao, L., Huang, Y., Zheng, X., Tang, Q. & Tan, X. 2015. Inhibitory effect of methyleugenol on IgE-mediated allergic inflammation
in RBL-2H3 cells. Mediators of Inflammation 2015: 463530.
Fink,
T., Wolf, A., Maurer, F., Albrecht, F.W., Nathalie, H., Beate, W., Hauschild, A.C., Bertram, B., Baumbach, J.I. & Thomas, V. 2015. Volatile organic compounds during inflammation
and sepsis in rats:
A potential breath test using ion-mobility spectrometry. Anesthesiol 122(1): 117-126.
Gong, Q.F. 2016. Traditional Chinese Medicine
Processing: Chapter XII. Beijing: China Press of Traditional Chinese
Medicine.
Guo,
C., Kang, X.D., Cao, F., Yang, J. &
Fu, X. 2021. Network pharmacology
and molecular docking
on the molecular mechanism
of Luo-Hua-Zi-Zhu (LHZZ) granule
in the prevention and treatment
of bowel precancerous lesions. Frontiers in Pharmacology 12: 1-14.
Huang,
X., Gao, Y., Xu, F., Fan, D. &
Wu, H. 2020. Molecular mechanism underlying the anti-inflammatory effects of volatile components of Ligularia fischeri (Ledeb) Turcz based on network pharmacology. BMC Complementary Medicine
and Therapies 20(1): 1-13.
Labib,
R.M., Youssef, F.S., Ashour, M.L., Abdel-Daim,
M.M. & Ross, S.A. 2017. Chemical composition
of Pinus roxburghii bark volatile oil and validation
of its anti-inflammatory activity using molecular modelling and bleomycin-induced inflammation
in albino mice. Molecules 22(9): 1384.
Li,
C., Huang, F., Dou, C.G., Zhang, M. &
Ma, S.P. 2009. Effect of compatibility
of Aster tataricus and Flos Farfarae on anti-inflammation. Chinese Journal of
Clinical Pharmacology and Therapeutics 14(2): 155-159.
Li,
M.Q., Luo, L., Shang, N.N., Meng, B.H. &
Huang, H.Z. 2020. Contradictions and countermeasures from cultural inheritance
to industrial modernization. Chinese Traditional Patent Medicine 42(11): 2999-3003.
Li,
P., Wang, J., Wang, C., Cheng, L. &
Zhao, B. 2021. Therapeutic effects
and mechanisms study
of Hanchuan Zupa Granule in a guinea pig model
of cough variant asthma. Journal of Ethnopharmacology 269(6):
113719.
Li, S.M., Zeng, B.Y., Ye, Q., Ao, H. &
Li, H.X. 2015. Correlation analysis between GC-MS fingerprint
of essential oil
of amomi fructus and antiinflammatory activity. Chinese Journal of
Experimental Traditional Medical Formulae 21(9): 133-136.
Lin,
Z.X. 2011. Benzylamine and methylamine, substrates of semicarbazide-sensitive amine oxidase, attenuate inflammatory response induced by lipopolysaccharide.
Thesis. Shantou University (Unpublished).
Lin,
Y.M., Badrealam, K.F., Kuo, W.W., Lai, P.F., Chen, W.S., Day, C.H., Ho, T.J., Viswanadha,
V.P., Shibu, M.A. &
Huang, C.Y. 2020. Nerolidol improves cardiac function in spontaneously hypertensive rats
by inhibiting cardiac inflammation and remodelling associated TLR4/ NF-κB signalling cascade. Food and Chemical Toxicology 147(2021): 111837.
McGarry,
T., Biniecka, M., Gao, W., Cluxton,
D., Canavan, M., Wade, S., Wade, S., Gallagher, L., Orr, C., Veale, D.J. &
Fearon, U. 2017. Resolution of TLR2-induced inflammation through manipulation
of metabolic pathways in Rheumatoid Arthritis. Scientific Reports 7: 43165.
National
Pharmacopoeia Commission. 2020. The
Pharmacopoeia of the People's Republic of China: Part I. Beijing: China Medical Science and Technology
Press.
Ninomiya,
K., Hayama, K., Ishijima,
S.A., Maruyama, N., Irie, H., Kurihara,
J. & Abe, S. 2013. Suppression of inflammatory reactions by terpinen-4-ol,
a main constituent of tea tree oil, in a murine model of oral candidiasis and
its suppressive activity to cytokine production of macrophages in vitro. Biological
and Pharmaceutical Bulletin 36(5): 838-844.
Pang,
X.T., Zhang, Y.Y., Leng, Y.F., Yao,
Y., Zhang, R., Wang, D.W., Xu, X. &
Sun, Z.L. 2021. Metabolomics study
of biochemical changes
in the serum and articular synovium tissue
of moxibustion in rats
with collagen-induced arthritis. World Journal of
Acupuncture-Moxibustion 31(1):
30-43.
Petelin, M., Pavlica, Z., Ivanuša, T., Šentjurc, M. & Skalerič, U. 2000. Local delivery of liposome‐encapsulated superoxide dismutase and catalase suppress periodontal inflammation in beagles. Journal of Clinical Periodontology 27(12):
918-925.
Ping,
J., Hao, L. &
Xiao, L. 2015. Diabetes mellitus risk factors
in rheumatoid arthritis: A systematic review and meta-analysis. Clinical and Experimental
Rheumatology 33(1): 115-121.
Queiroz,
J.C.C., Antoniolli, Â.R., Quintans-Júnior, L.J.,
Brito, R.G., Barreto, R.S., Costa, E.V., da Silva, T.B., Prata,
A.P.N., de Lucca, W., Almeida, J.R. & Lima, J.T. 2014. Evaluation of the
anti-inflammatory and antinociceptive effects of the essential oil from leaves
of Xylopia laevigata in experimental
models. The Scientific World Journal 2014: 816450.
Riggle, K.M., Riehle, K.J., Kenerson, H.L., Turnham, R., Homma, M.K., Kazami, M., Samelson, B., Bauer, R., McKnight, G.S. & Scott, J.D. 2016. Enhanced cAMP-stimulated protein kinase A activity
in human fibrolamellar hepatocellular carcinoma. Pediatric Research 80: 110-118.
Saeed,
N.M., Ebtehal, E.D., Hanaa, M.A., Algandaby, M.M., Fahad,
A.A. & Ashraf, B.A. 2012. Anti-inflammatory activity of methyl palmitate and ethyl palmitate in different experimental rat models. Toxicology and Applied
Pharmacology 264(1): 84-93.
Santos,
K.B., Guedes, I.A., Karl, A.L. & Dardenne, L.E. 2020. Highly flexible
ligand docking: Benchmarking of the DockThor program
on the LEADS-PEP protein–peptide data set. Journal of Chemical
Information and Modeling 60(2): 667-683.
Sakhaee, M.H., Sayyadi, S.A.H., Sakhaee, N., Sadeghnia, H.R., Hosseinzadeh,
H., Nourbakhsh, F. & Forouzanfar,
F. 2020. Cedrol protects against chronic constriction injury-induced neuropathic pain
through inhibiting oxidative stress and inflammation. Metabolic Brain Disease 35(7): 1119-1126.
Sousa,
C., Leitão, A.J., Neves, B.M., Judas, F., Cavaleiro, C.
& Mendes, A.F. 2020. Standardized comparison of limonene-derived monoterpenes identifies structural determinants of anti-inflammatory activity. Scientific Reports 10(1): 7199.
Su,
G.Y. & Liu, Y. 2011. Production process of Aster tataricus and honey-fried Aster tataricus. Capital Medicine 18(3): 49.
Wen,
S., Hu, X.H., Zhang, X.R. & Huang, Y. 2015. Effects of eIF6 on the expression of pro-inflammatory mediators derived from M2 macrophages. Medical Journal of Chinese People's Liberation Army 40(2): 104-109.
Wu,
C., Chen, Z.J., Hu, Y.J., Xiu, Y.F. & Cheng, X.M. 2006. Experimental study
on phlegm-resolving action of different prepared products
of radix Asteris. Journal
of Shanghai University of Traditional Chinese Medicine 20(3): 55-57.
Yang,
Q., Luo, J., Lv, H., Wen,
T. & Zeng, N. 2019. Pulegone inhibits inflammation via suppression
of NLRP3 inflammasome and reducing cytokine production
in mice. Immunopharmacology and
Immunotoxicology 41(3): 1-8.
Zhang,
H.P., Li, D.X. &
Zhou, Y. 2017. Anti-inflammatory, antitussive, expectorant
and analgesic effects
of volatile oil
from Uighur medicine Hyssopus officinalis. China
Pharmacist 20(2): 221-224.
Zhang,
R.W., Tian, A., Shi, X.G. & Yu, H.M. 2010. Downregulation of IL-17 and IFN-γ in
the optic nerve
by β-elemene in experimental autoimmune encephalomyelitis. International Immunopharmacology 10(7): 738-743.
*Corresponding author; email: whm0425@126.com
|