Sains
Malaysiana 51(6)(2022):
1753-1764
http://doi.org/10.17576/jsm-2022-5106-12
Biosorption of Pb2+ using Fusarium sp.
RS01, a Hg2+ and Pb2+-Resistant Indigenous Fungus of an
Abandoned Illegal Gold Mining Site
(Biopenyerapan bagi Pb2+ menggunakan Fusarium sp. RS01, sebagai Kulat Asli Kalis Hg2+ dan
Pb2+ Bertempat di Tapak Perlombongan Emas Haram Terbiar)
RISA NOFIANI1,*, RIO1, KIKI KOMALASARI1, PUJI ARDININGSIH1 & SRI JUARI SANTOSA2
1Department of Chemistry, Mathematics and Natural
Sciences Faculty, Tanjungpura University, Jl. Prof. Dr. H. Hadari Nawawi, Pontianak, Indonesia 78124
2Department of Chemistry, Faculty of Mathematics and Natural Science, Universitas Gadjah Mada, Bulaksumur, Yogyakarta, Indonesia 55281
Received: 3 August 2021/Accepted: 2 November
2021
Abstract
Keywords: Aspergillus sp.; biosorption; Fusarium sp.; Hg2+; isotherm model; Pb2+
Abstrak
Kajian ini bertujuan untuk mengenal pasti dan mencirikan kulat asli kalis Hg2+ dan Pb2+ yang berasal dari Mandor, sebuah tapak perlombongan emas haram terbiar di Kalimantan
Barat, Indonesia. Kulat kalis yang mempunyai keupayaan untuk menyerap Pb2+ yang paling tinggi dicirikan untuk analisis biopenyerapannya terhadap Pb2+. Tiga sampel berbeza terdiri daripada sampel yang diambil di kawasan pasir (RP), kawasan rizosfera (RR) dan kawasan mendapan (RS) telah dikumpulkan sebagai sumber kulat. Ketiga-tiga jenis sampel telah diinokulasi dalam medium agar dekstrosa kentang (PDA) dan ditambah dengan 7.4 ppm HgCl2 dan 7.5 ppm PbCl2 untuk saringan kulat kalis Hg2+ dan
Pb2+. Setiap kulat yang disaring dikenal pasti secara makroskopik dan mikroskopik. Indeks toleransi (TI) terhadap Hg2+ dan Pb2+ telah diperiksa dengan mengukur diameter pertumbuhan kulat dalam medium PDA tanpa atau dengan kehadiran kepekatan HgCl2 atau PbCl2 yang berbeza. Daripada enam kulat yang dikenal pasti, lima daripadanya menunjukkan rintangan terhadap Hg2+ dan Pb2+ kepada kepekatan maksimum iaitu 200 ppm HgCl2 dan 2085 ppm PbCl2, masing-masing. Lima kulat yang dikenal pasti ialah Penicillium sp. RR01, Aspergillus sp. RR02, Aspergillus sp. RR03, Aspergillus niger RP01, dan Fusarium sp. RS01. Pada keadaan optimum iaitu pada pH 6
dan masa penjerapan selama 15 min, penggunaan 200 ppm Fusarium sp. dapat mengeluarkan 9.5 ppm Pb2+. Biopenyerapan bagi Pb2+ ini menuruti model isoterma Freundlich yang menunjukkan bahawa Fusarium sp. RS01 mempunyai tapak aktif heterogen untuk penjerapan.
Kata kunci: Aspergillus sp.; biopenyerapan; Fusarium sp.; Hg2+;
model isoterma; Pb2+
REFERENCES
Abd El Hameed, A.H., Eweda, W.E., Abou-Taleb, K.A.A. & Mira, H.I. 2015. Biosorption of
uranium and heavy metals using some local fungi isolated from phosphatic
fertilizers. Annals of Agricultural Sciences 60(2): 345-351.
Acosta-Rodríguez,
I., Cardenás-González, J.F., Pérez, A.S.R., Oviedo, J.T. & Martínez-Juárez, V.M. 2018. Bioremoval of different heavy metals by the
resistant fungal strain Aspergillus niger. Bioinorganic
Chemistry and Applications 2018: 3457196.
Ahmad, I.,
Imran, M., Ansari, M.I., Malik, A. & Pichtel, J. 2011. Metal
Tolerance and Biosorption Potential of Soil Fungi: Applications for a Green and
Clean Water Treatment Technology. New York: Springer.
Ayawei, N.,
Ebelegi, A.N. & Wankasi, D. 2017. Modelling and
interpretation of adsorption isotherms. Journal of Chemistry 2017:
3039817.
Chang, J.,
Shi, Y., Si, G., Yang, Q., Dong, J. & Chen, J.
2020. The bioremediation potentials and mercury(II)-resistant mechanisms of a
novel fungus Penicilliumspp. DC-F11 isolated from
contaminated soil. Journal of Hazardous Materials 396(March): 122638.
Desta, M.B.
2013. Batch sorption experiments: Langmuir and Freundlich
isotherm studies for the adsorption of textile metal ions onto Teff Straw
(Eragrostic tef) agricultural waste. Journal of Thermodynamics 13: Article ID. 375830.
Febrianto,
J., Kosasih, A.N., Sunarso, J., Ju, Y.H., Indraswati, N. & Ismadji, I.
2009. Equilibrium and kinetic studies in adsorption of heavy metals using
biosorbent: A summary of recent studies. Journal of Hazardous
Materials 162(2-3): 616-645.
Ghoniemy,
E.A., Mohammaden, T.F., El-Shahat, M.R., Elkhawaga, M.A., Rezk, M.M.
& Wessam, M.M.
2020. Fungal treatment for liquid waste containing U(VI) and Th(IV). Biotechnology
Reports 26: e00472.
Iram, S.,
Shabbir, R., Zafar, H. & Javaid, M.
2015. Biosorption and bioaccumulation of copper and lead by heavy
metal-resistant fungal isolates. Arabian Journal for Science and Engineering 40(7): 1867-1873.
Javanbakht,
V., Zilouei, H. & Karimi, K. 2011. Lead biosorption by different morphologies of fungus
Mucor indicus. International Biodeterioration and Biodegradation 65(2):
294-300.
Jin, Z.,
Xie, L., Zhang, T., Liu, L., Black, T., Jones, K.C., Zhang, H., Wang, X., Jin, N. & Zhang, D. 2020. Interrogating
cadmium and lead biosorption mechanisms by Simplicillium chinense via infrared
spectroscopy. Environmental Pollution 263(Pt A): 114419.
Kotrba, P., Mackova, M. & Macek, T. 2011. Microbial
Biosorpton of Metals. Springer. Vol. 53.
Mohapatra,
R.K.,
Parhi, P.K., Pandey, S., Bindhani, B.K., Thatoi, H. & Panda, C.R. 2019. Active and
passive biosorption of Pb(II) using live and dead biomass of
marine bacterium Bacillus xiamenensis PbRPSD202: Kinetics
and isotherm studies. Journal of Environmental Management 247: 121-134.
Netpae, T.
2012. Removal of lead from aqueous solutions by Aspergillus niger from artificial vinegar factory. Electronic Journal of
Biology 8(1): 7-10.
Oladipo,
O.G., Awotoye, O.O., Olayinka, A., Bezuidenhout, C.C. & Maboeta, M.S.
2018. Heavy metal tolerance traits of filamentous fungi isolated from gold and
gemstone mining sites. Brazilian Journal of Microbiology 49(1): 29-37.
Pietro-Souza,
W., Pereira, F.d.C., Mello, I.S., Stachack, F.F.F., Terezo, A.J., Cunha, C.N.d., White, J.F., Li, H. & Soares, M.A.
2020. Mercury resistance and bioremediation mediated by endophytic fungi. Chemosphere 240: 124874.
Ponizovsky,
A.A. & Tsadilas, C.D.
2003. Lead(II) retention by alfisol and clinoptilolite: Cation
balance and pH effect. Geoderma 115(3-4): 303-312.
Rose, P.K. & Devi, R. 2018. Heavy metal
tolerance and adaptability assessment of indigenous filamentous fungi isolated
from industrial wastewater and sludge samples. Beni-Suef University Journal
of Basic and Applied Sciences 7(4): 688-694.
Rozman, U., Kalčíková, G., Marolt, G., Skalar, T. & Gotvajn, A.Z. 2020. Potential of
waste fungal biomass for lead and cadmium removal: Characterization,
biosorption kinetic and isotherm studies. Environmental Technology and
Innovation 18: 100742.
Saǧ, Y.
2001. Biosorption of heavy metals by fungal biomass and modeling of fungal
biosorption: A review. Separation and Purification Methods 30(1): 1-48.
Sayed,
M.T.E. & El-Sayed, A.S.A.
2020. Tolerance and mycoremediation of silver ions by Fusarium solani. Heliyon 6(5): e03866.
Sen, M.,
Dastidar, M.G. & Roychoudhury, P.K. 2005. Biosorption of chromium (VI) by nonliving Fusarium sp. isolated from soil. Practice Periodical of Hazardous,
Toxic, and Radioactive Waste Management 9(3): 147-151.
Sharma, S.,
Tiwari, K.L. & Jadhav, S.K. 2018. Diversity of
fungal endophytes in Typha latifolia (L.) and their lead
biosorption activity. Euro-Mediterranean Journal for Environmental
Integration 3: 4. https://doi.org/10.1007/s41207-017-0041-x
Site, A.D. 2001. Factors
affecting sorption of organic compounds in natural sorbent/water systems and
sorption coefficients for selected pollutants. A review. Journal of
Physical and Chemical Reference Data 30(1): 187-439.
Urík, M.,
Hlodák, M., Mikušová, P. & Matúš, P. 2014. Potential of microscopic fungi isolated from mercury
contaminated soils to accumulate and volatilize mercury(II). Water, Air, and
Soil Pollution 225: 2219.
Vargas-García,
M.d.C., López, M.J., Suárez-Estrella, F. & Moreno, J. 2012. Compost as a source of microbial isolates for the
bioremediation of heavy metals: in vitro selection. Science of the
Total Environment 431: 62-67.
Velmurugan,
N., Hwang, G., Sathishkumar, M., Choi, T.K., Lee, K.J., Oh, B.T.
& Lee, Y.S. 2010. Isolation,
identification, Pb(II) biosorption isotherms and kinetics of a lead adsorbing Penicillium sp.
MRF-1 from South Korean mine soil. Journal of Environmental Sciences 22(7): 1049-1056.
Watanabe, T.
2010. Pictorial Atlas of Soil and Seed Fungi. Boca
Raton: CRC Press.
Zhu, Z.,
Song, Q. & Dong, F.
2018. Taxonomy characterization and plumbum bioremediation of novel fungi. Journal
of Basic Microbiology 58(4): 368-376.
*Corresponding
author; email: risa.nofiani@chemistry.untan.ac.id
|