Sains Malaysiana 51(6)(2022): 1753-1764

http://doi.org/10.17576/jsm-2022-5106-12

 

Biosorption of Pb2+ using Fusarium sp. RS01, a Hg2+ and Pb2+-Resistant Indigenous Fungus of an Abandoned Illegal Gold Mining Site

(Biopenyerapan bagi Pb2+ menggunakan Fusarium sp. RS01, sebagai Kulat Asli Kalis Hg2+ dan Pb2+ Bertempat di Tapak Perlombongan Emas Haram Terbiar)

 

RISA NOFIANI1,*, RIO1, KIKI KOMALASARI1, PUJI ARDININGSIH1 & SRI JUARI SANTOSA2

 

1Department of Chemistry, Mathematics and Natural Sciences Faculty, Tanjungpura University, Jl. Prof. Dr. H. Hadari Nawawi, Pontianak, Indonesia 78124

2Department of Chemistry, Faculty of Mathematics and Natural Science, Universitas Gadjah Mada, Bulaksumur, Yogyakarta, Indonesia 55281

 

Received: 3 August 2021/Accepted: 2 November 2021

 

Abstract

This study aims to identify and characterize Hg2+ and Pb2+-resistant indigenous fungi that originated in Mandor, an abandoned illegal gold mining site in West Kalimantan, Indonesia. The resistant fungus which has the highest ability in uptaking Pb2+ is then further examined for its biosorption characteristics towards Pb2+. Three different samples consisted of samples taken in the sand area (RP), rhizosphere area (RR) and sediment area (RS) were collected as the sources of fungi. The three types of samples were inoculated in a potato dextrose agar (PDA) medium supplemented with 7.4 ppm of HgCl2 and 7.5 ppm of PbCl2 for screening Hg2+ and Pb2+-resistant fungi, respectively. Each screened fungus was identified macroscopically and microscopically. The tolerant index (TI) towards Hg2+ and Pb2+ was checked by measuring the fungal growth diameter in a PDA medium without or with the presence of different HgCl2 or PbCl2 concentrations. From six identified fungi, five of them showed resistance towards Hg2+ and Pb2+ to maximum concentrations of 200 ppm of HgCl2 and 2085 ppm of PbCl2, respectively. The five identified fungi were Penicillium sp. RR01, Aspergillus sp. RR02, Aspergillus sp. RR03, Aspergillus niger RP01, and Fusarium sp. RS01. At the optimum condition of pH 6 and adsorption time 15 min, the application of 200 ppm of Fusarium sp. was able to remove 9.5 ppm of Pb2+. This Pb2+ biosorption followed well Freundlich isotherm model indicating that the Fusarium sp. RS01 had heterogenous active sites for the adsorption.

 

Keywords: Aspergillus sp.; biosorption; Fusarium sp.; Hg2+; isotherm model; Pb2+

 

Abstrak

Kajian ini bertujuan untuk mengenal pasti dan mencirikan kulat asli kalis Hg2+ dan Pb2+ yang berasal dari Mandor, sebuah tapak perlombongan emas haram terbiar di Kalimantan Barat, Indonesia. Kulat kalis yang mempunyai keupayaan untuk menyerap Pb2+ yang paling tinggi dicirikan untuk analisis biopenyerapannya terhadap Pb2+. Tiga sampel berbeza terdiri daripada sampel yang diambil di kawasan pasir (RP), kawasan rizosfera (RR) dan kawasan mendapan (RS) telah dikumpulkan sebagai sumber kulat. Ketiga-tiga jenis sampel telah diinokulasi dalam medium agar dekstrosa kentang (PDA) dan ditambah dengan 7.4 ppm HgCl2 dan 7.5 ppm PbCl2 untuk saringan kulat kalis Hg2+ dan Pb2+. Setiap kulat yang disaring dikenal pasti secara makroskopik dan mikroskopik. Indeks toleransi (TI) terhadap Hg2+ dan Pb2+ telah diperiksa dengan mengukur diameter pertumbuhan kulat dalam medium PDA tanpa atau dengan kehadiran kepekatan HgCl2 atau PbCl2 yang berbeza. Daripada enam kulat yang dikenal pasti, lima daripadanya menunjukkan rintangan terhadap Hg2+ dan Pb2+ kepada kepekatan maksimum iaitu 200 ppm HgCl2 dan 2085 ppm PbCl2, masing-masing. Lima kulat yang dikenal pasti ialah Penicillium sp. RR01, Aspergillus sp. RR02, Aspergillus sp. RR03, Aspergillus niger RP01, dan Fusarium sp. RS01. Pada keadaan optimum iaitu pada pH 6 dan masa penjerapan selama 15 min, penggunaan 200 ppm Fusarium sp. dapat mengeluarkan 9.5 ppm Pb2+. Biopenyerapan bagi Pb2+ ini menuruti model isoterma Freundlich yang menunjukkan bahawa Fusarium sp. RS01 mempunyai tapak aktif heterogen untuk penjerapan.

 

Kata kunci: Aspergillus sp.; biopenyerapan; Fusarium sp.; Hg2+; model isoterma; Pb2+

 

REFERENCES

Abd El Hameed, A.H., Eweda, W.E., Abou-Taleb, K.A.A. & Mira, H.I. 2015. Biosorption of uranium and heavy metals using some local fungi isolated from phosphatic fertilizers. Annals of Agricultural Sciences 60(2): 345-351.

Acosta-Rodríguez, I., Cardenás-González, J.F., Pérez, A.S.R., Oviedo, J.T. & Martínez-Juárez, V.M. 2018. Bioremoval of different heavy metals by the resistant fungal strain Aspergillus niger. Bioinorganic Chemistry and Applications 2018: 3457196.

Ahmad, I., Imran, M., Ansari, M.I., Malik, A. & Pichtel, J. 2011. Metal Tolerance and Biosorption Potential of Soil Fungi: Applications for a Green and Clean Water Treatment Technology. New York: Springer.

Ayawei, N., Ebelegi, A.N. & Wankasi, D. 2017. Modelling and interpretation of adsorption isotherms. Journal of Chemistry 2017: 3039817.

Chang, J., Shi, Y., Si, G., Yang, Q., Dong, J. & Chen, J. 2020. The bioremediation potentials and mercury(II)-resistant mechanisms of a novel fungus Penicilliumspp. DC-F11 isolated from contaminated soil. Journal of Hazardous Materials 396(March): 122638.

Desta, M.B. 2013. Batch sorption experiments: Langmuir and Freundlich isotherm studies for the adsorption of textile metal ions onto Teff Straw (Eragrostic tef) agricultural waste. Journal of Thermodynamics 13: Article ID. 375830.

Febrianto, J., Kosasih, A.N., Sunarso, J., Ju, Y.H., Indraswati, N. & Ismadji, I. 2009. Equilibrium and kinetic studies in adsorption of heavy metals using biosorbent: A summary of recent studies. Journal of Hazardous Materials 162(2-3): 616-645.

Ghoniemy, E.A., Mohammaden, T.F., El-Shahat, M.R., Elkhawaga, M.A., Rezk, M.M. & Wessam, M.M. 2020. Fungal treatment for liquid waste containing U(VI) and Th(IV). Biotechnology Reports 26: e00472.

Iram, S., Shabbir, R., Zafar, H. & Javaid, M. 2015. Biosorption and bioaccumulation of copper and lead by heavy metal-resistant fungal isolates. Arabian Journal for Science and Engineering 40(7): 1867-1873.

Javanbakht, V., Zilouei, H. & Karimi, K. 2011. Lead biosorption by different morphologies of fungus Mucor indicus. International Biodeterioration and Biodegradation 65(2): 294-300.

Jin, Z., Xie, L., Zhang, T., Liu, L., Black, T., Jones, K.C., Zhang, H., Wang, X., Jin, N. & Zhang, D. 2020. Interrogating cadmium and lead biosorption mechanisms by Simplicillium chinense via infrared spectroscopy. Environmental Pollution 263(Pt A): 114419.

Kotrba, P., Mackova, M. & Macek, T. 2011. Microbial Biosorpton of Metals. Springer. Vol. 53.

Mohapatra, R.K., Parhi, P.K., Pandey, S., Bindhani, B.K., Thatoi, H. & Panda, C.R. 2019. Active and passive biosorption of Pb(II) using live and dead biomass of marine bacterium Bacillus xiamenensis PbRPSD202: Kinetics and isotherm studies. Journal of Environmental Management 247: 121-134.

Netpae, T. 2012. Removal of lead from aqueous solutions by Aspergillus niger from artificial vinegar factory. Electronic Journal of Biology 8(1): 7-10.

Oladipo, O.G., Awotoye, O.O., Olayinka, A., Bezuidenhout, C.C. & Maboeta, M.S. 2018. Heavy metal tolerance traits of filamentous fungi isolated from gold and gemstone mining sites. Brazilian Journal of Microbiology 49(1): 29-37.

Pietro-Souza, W., Pereira, F.d.C., Mello, I.S., Stachack, F.F.F., Terezo, A.J., Cunha, C.N.d., White, J.F., Li, H. & Soares, M.A. 2020. Mercury resistance and bioremediation mediated by endophytic fungi. Chemosphere 240: 124874.

Ponizovsky, A.A. & Tsadilas, C.D. 2003. Lead(II) retention by alfisol and clinoptilolite: Cation balance and pH effect. Geoderma 115(3-4): 303-312.

Rose, P.K. & Devi, R. 2018. Heavy metal tolerance and adaptability assessment of indigenous filamentous fungi isolated from industrial wastewater and sludge samples. Beni-Suef University Journal of Basic and Applied Sciences 7(4): 688-694.

Rozman, U., Kalčíková, G., Marolt, G., Skalar, T. & Gotvajn, A.Z. 2020. Potential of waste fungal biomass for lead and cadmium removal: Characterization, biosorption kinetic and isotherm studies. Environmental Technology and Innovation 18: 100742.

Saǧ, Y. 2001. Biosorption of heavy metals by fungal biomass and modeling of fungal biosorption: A review. Separation and Purification Methods 30(1): 1-48.

Sayed, M.T.E. & El-Sayed, A.S.A. 2020. Tolerance and mycoremediation of silver ions by Fusarium solani. Heliyon 6(5): e03866.

Sen, M., Dastidar, M.G. & Roychoudhury, P.K. 2005. Biosorption of chromium (VI) by nonliving Fusarium sp. isolated from soil. Practice Periodical of Hazardous, Toxic, and Radioactive Waste Management 9(3): 147-151.

Sharma, S., Tiwari, K.L. & Jadhav, S.K. 2018. Diversity of fungal endophytes in Typha latifolia (L.) and their lead biosorption activity. Euro-Mediterranean Journal for Environmental Integration 3: 4. https://doi.org/10.1007/s41207-017-0041-x

Site, A.D. 2001. Factors affecting sorption of organic compounds in natural sorbent/water systems and sorption coefficients for selected pollutants. A review. Journal of Physical and Chemical Reference Data 30(1): 187-439.

Urík, M., Hlodák, M., Mikušová, P. & Matúš, P. 2014. Potential of microscopic fungi isolated from mercury contaminated soils to accumulate and volatilize mercury(II). Water, Air, and Soil Pollution 225: 2219.

Vargas-García, M.d.C., López, M.J., Suárez-Estrella, F. & Moreno, J. 2012. Compost as a source of microbial isolates for the bioremediation of heavy metals: in vitro selection. Science of the Total Environment 431: 62-67.

Velmurugan, N., Hwang, G., Sathishkumar, M., Choi, T.K., Lee, K.J., Oh, B.T. & Lee, Y.S. 2010. Isolation, identification, Pb(II) biosorption isotherms and kinetics of a lead adsorbing Penicillium sp. MRF-1 from South Korean mine soil. Journal of Environmental Sciences 22(7): 1049-1056.

Watanabe, T. 2010. Pictorial Atlas of Soil and Seed Fungi. Boca Raton: CRC Press.

Zhu, Z., Song, Q. & Dong, F. 2018. Taxonomy characterization and plumbum bioremediation of novel fungi. Journal of Basic Microbiology 58(4): 368-376.

 

*Corresponding author; email: risa.nofiani@chemistry.untan.ac.id

 

 

previous