Sains Malaysiana 51(6)(2022):
1765-1774
http://doi.org/10.17576/jsm-2022-5106-13
Graphene Oxide
Immobilized Binuclear Biomimetic Catalyst for Triclosan Degradation in Aqueous Solution
(Pemangkin Biomimetik Binukleus Grafin Oksida Tidak Bergerak
kepada Degradasi Triklosan dalam Larutan Akues)
XUE-FEI
ZHOU1,2,* & SHUN-YANG CHEN1
1Fujian Provincial Key Laboratory of Marine
Ecological Conservation and Restoration, Third Institute
of Oceanography, Ministry of Natural Resources, 361005 Xiamen, China
2Faculty of Chemical Engineering, Kunming
University of Science and Technology, 650500 Kunming, China
Received: 21 June
2021/Accepted: 1 November 2021
Abstract
Biomimetic
catalysts, Zn(salen), Zn(Phe-TPP), ZnPSC6 and graphene oxide (GO) immobilized ZnPSC6 (ZnPSC6/GO), were fabricated.
These biomimetic catalysts were tested for catalytic decomposition of emerging contaminant triclosan (TCS). Catalysts were characterized
using Brunauer-Emmett-Teller (BET), X-ray Diffraction (XRD), Fourier Transform infrared (FTIR), and
Raman spectra. The reaction processes were studied using HPLC, and the treated
solutions were tested based on total carbon content (TCC) analysis and toxicity
analysis. The impacts of catalysts on TCS
degradation were investigated through testing
removal efficiency, total carbon content (TCC) and ecotoxicity. The results showed that ZnPSC6/GO displayed high activity due to salen-porphyrin binuclear active sites and
immobilization into GO compared with Zn(salen), Zn(Phe-TPP), and ZnPSC6. Finally, the reaction conditions of TCS oxidation catalyzed by ZnPSC6/GO has been preliminarily discussed. In these conditions, high removal efficiency was observed (96.7%; [ZnPSC6/GO] = 3.0
ppm, [TCS] = 0.02 mmol/L, [H2O2] = 0.60 mmol/L, T = 70 °C, t = 90 min, pH = 8).
Keywords:
Biomimetic catalysis; degradation; salen-porphyrin complex; TCS
Abstrak
Pemangkin
biomimetik, Zn(salen), Zn(Phe-TPP), ZnPSC6 dan grafin oksida (GO)
tidak bergerak ZnPSC6 (ZnPSC6/GO) telah dihasilkan.
Pemangkin biomimetik ini telah diuji untuk penguraian pemangkin bagi triklosan
cemaran memuncul (TCS). Pemangkin tersebut telah dicirikan menggunakan
Brunauer-Emmett-Teller (BET), pembelauan Sinar-X (XRD), transformasi Fourier
inframerah (FTIR) dan spektrum Raman. Proses tindak balas telah dikaji
menggunakan HPLC dan larutan yang telah dirawat diuji berdasarkan analisis
jumlah kandungan karbon (TCC) dan analisis ketoksikan. Kesan pemangkin pada
degradasi TCS telah dikaji melalui ujian kecekapan penyingkiran, jumlah
kandungan karbon (TCC) dan ekoketoksikan. Keputusan menunjukkan bahawa ZnPSC6/GO
menunjukkan aktiviti yang tinggi disebabkan oleh tapak aktif binukleus
salen-porfirin dan imobilisasi ke dalam GO berbanding dengan Zn(salen),
Zn(Phe-TPP) dan ZnPSC6. Akhirnya, keadaan tindak balas pengoksidaan
TCS yang dimangkinkan oleh ZnPSC6/GO telah dibincangkan terlebih
dahulu. Oleh itu, kecekapan penyingkiran tertinggi telah diperhatikan (96.7%;
[ZnPSC6/GO] = 3.0 ppm, [TCS] = 0.02 mmol/L, [H2O2] = 0.60 mmol/L, T
= 70 °C, t = 90 min, pH = 8).
Kata kunci:
Degradasi; pemangkin biomimetik; salen-porfirin kompleks; TCS
REFERENCES
Abouelsayed, A., Anis, B., Hassaballa, S., Khalil, A.S.G., Rashed, U.M., Eid, K.A., Al-Ashkar, E. & El Hotaby, W. 2017. Preparation, characterization, Raman,
and Terahertz spectroscopy study on carbon nanotubes, graphene nano-sheets, and
onion like carbon materials. Materials
Chemistry and Physics 189:
127-135.
Al-Musawi, T.J., Rajiv, P., Mengelizadeh, N., Mohammed, I.A. & Balarak, D. 2021. Development of sonophotocatalytic process for
degradation of acid orange 7 dye by using titanium dioxide nanoparticles/graphene oxide nanocomposite as a catalyst. Journal
of Environmental Management 292: 112777.
Banfi,
S., Caruso, E., Buccafurni, L., Battini, V., Zazzaron, S., Barbieri, P. &
Orlandi, V. 2006. Antibacterial activity of tetraaryl-porphyrin
photosensitizers: An in vitro study on Gram negative and Gram positive
bacteria. Journal of Photochemistry and Photobiology B:
Biology 85(1): 28-38.
Beam,
R., Cancado, L.G. & Novotny, L. 2015. Raman characterization of defects and
dopants in graphene. Journal of
Physics-Condensed Matter27(8): 083002.
Cooke,
P.R. & Smith, J.R.L. 1994. Alkene epoxidation catalysed by
iron(III) and manganese(III) tetraarylporphyrins coordinatively bound to
polymer and silica supports. Journal of the Chemical Society-Perkin Transactions 1(14): 1913-1923.
Crincoli, K.R. & Huling, S.G. 2021. Contrasting hydrogen peroxide- and persulfate-driven oxidation systems:
Impact of radical scavenging on treatment
efficiency and cost. Chemical
Engineering Journal 404:
126404.
Das, R.K., Sarkar, M., Rahaman, S.M.W., Doucet, H. & Bera, J.K. 2012. Binuclear copper
complexes and their catalytic evaluation. European Journal of
Inorganic Chemistry 2012(10): 1680-1687.
Esmelindro,
M.C., Oestreicher, E.G., Marquez-Alvarez, H., Dariva, C., Egues, S.M.S., Fernandes, C., Bortoluzzi, A.J., Drago, V. & Antunes, O.A.C. 2005. Catalytic oxidation of cyclohexane by a binuclear
Fe(III) complex biomimetic to methane monooxygenase. Journal of Inorganic Biochemistry 99(10): 2054-2061.
Gangemi et al. 2019
Guo,
M., Lee, Y.M., Fukuzumi, S. & Nam, W. 2021. Biomimetic metal-oxidant adducts as active
oxidants in oxidation reactions. Coordination
Chemistry Reviews 435: 213807.
Gur,
B., Ayhan, M.E., Turkhan, A., Gur, F. & Kaya, E.D. 2019. A facile
immobilization of polyphenol oxidase enzyme on graphene oxide and reduced
graphene oxide thin films: An insight into in-vitro activity
measurements and characterization. Colloids and Surfaces A: Physicochemical
and Engineering Aspects 562: 179-185.
Huang, Z.Y., Wu, P.X., Liu, C.H., Chen, M.Q., Yang, S.S., Dang, Z. & Zhu, N.W. 2021. Multiple catalytic reaction sites
induced non-radical/radical pathway with graphene layers encapsulated Fe-N-C
toward highly efficient peroxymonosulfate (PMS) activation. Chemical Engineering
Journal413: 127507.
Huang, S., Sun, L. & Ye, C. 1983. Studies on the porphyrin compounds. Chemical Journal of Chinese Universities 4(3): 381-384.
Kaur, H., Hippargi, G., Pophali, G.R. & Bansiwal, A. 2019. Biomimetic
lipophilic activated carbon for enhanced removal of triclosan from water. Journal of
Colloid and Interface Science535: 111-121.
Li,
J., Fan, Y., Ren, Y., Liao, J., Qi, C. & Jiang, H. 2018. Development of
isostructural porphyrinsalen chiral metal-organic frameworks through
postsynthetic metalation based on single-crystal to single-crystal
transformation. Inorganic Chemistry 57(3):
1203-1212.
Maruyama,
K., Kobayashi, F. & Osuka, A. 1991. Synthesis and characterization of
directly linked salen–porphyrin system with constrained geometries. Bulletin of the Chemical Society of Japan 64(1):
29-34.
Meininger, D.J., Arman, H.D. & Tonzetich, Z.J. 2017. Synthesis, characterization, and
binding affinity of hydrosulfide complexes of synthetic iron(II) porphyrinates. Journal of Inorganic Biochemistry 42: 149-167.
Mohamad, S., Bakhshaei, S., Abdul, M.N.S., Parmin, N.A. & Mahmad, R.S.K. 2021. Free fatty acid from waste palm oil
functionalized magnetic nanoparticles immobilized on surface graphene oxide as
a new adsorbent for simultaneously detecting hazardous polycyclic aromatic
hydrocarbons and phthalate esters in food extracts. Journal of Nanoscience and Nanotechnology 21(11): 5522-5534.
Mulla, S.I., Asefi, B., Bharagava, R.N., Saratale, G.D., Li, J.W., Huang, C.L. & Yu, C.P. 2020.
Processes for the removal of triclosan in the
environment and engineered systems: A review. Environmental Reviews 28(1): 55-66.
Naidu,
R., Espana, V.A.A., Liu, Y. & Jit, J. 2016. Emerging contaminants in the
environment: Risk-based analysis for better management. Chemosphere 154: 350-357.
Peng, J., Zhang, Y., Zhang, Y.,
Chen, M., Zhang, H., Li, J., Liu, H. & Gao, S. 2019. Oxidative removal of
triclosan with hydrogen peroxide catalyzed by a schiff base Cu(Ⅱ)-complex. Environmental
Chemistry 38: 977-984.
Pfaffeneder-Kmen, M., Casas, I.F., Naghilou, A., Trettenhahn, G. & Kautek, W. 2017. A multivariate curve resolution
evaluation of an in-situ ATR-FTIR spectroscopy investigation of the
electrochemical reduction of graphene oxide. Electrochimica Acta 255: 160-167.
Pintado-Herrera,
M.G., González-Mazo, E. & Lara-Martín, P.A. 2014. Determining the
distribution of triclosan and methyl triclosan in estaurine settings. Chemosphere 95: 478-485.
Qian, L., Liu, P., Shao, S., Wang, M.J., Zhan, X. & Gao, S.X. 2019. An efficient graphene supported copper
salen catalyst for the activation of persulfate to remove chlorophenols in
aqueous solution. Chemical Engineering
Journal360: 54-63.
Samarghandi, M.R., Dargahi, A., Rahmani, A., Shabanloo, A., Ansari, A. & Nematollahi, D.
2021. Application of a fluidized
three-dimensional electrochemical reactor with Ti/SnO2-Sb/beta-PbO2 anode and
granular activated carbon particles for degradation and mineralization of
2,4-dichlorophenol: Process optimization and degradation pathway. Chemosphere 279: 130640.
Salamanca, M., López-Serna, R., Palacio, L., Hernández, A., Prádanos, P. & Peña, M. 2021. Study of the rejection of contaminants of emerging concern by
a biomimetic aquaporin hollow fiber forward osmosis membrane. Journal of Water Process
Engineering 40: 101914.
Savunthari, K.V., Arunagiri, D., Shanmugam, S., Ganesan, S., Arasu, M.V., Al-Dhabi, N.A., Chi, N.T.L.
& Ponnusamy, V.K.
2021. Green synthesis of lignin
nanorods/g-C3N4 nanocomposite materials for efficient photocatalytic
degradation of triclosan in environmental water. Chemosphere272:
129801.
Souchier, M., Casellas, C., Ingrand, V.
& Chiron, S. 2016. Insights into reductive dechlorination
of triclocarban in river sediments: Field measurements and in vitro mechanism investigations. Chemosphere 144: 425-432.
Stobinski, L., Lesiak, B., Malolepszy, A., Mazurkiewicz, M., Mierzwa, B., Zemek, J., Jiricek, P.
& Bieloshapka, I.
2014. Graphene oxide and reduced graphene
oxide studied by the XRD, TEM and electron spectroscopy methods. Journal of Electron
Spectroscopy and Related Phenomena195: 145-154.
Szychowski, K.A., Skóra,
B. & Wójtowicz, A.K. 2021. Triclosan
affects the expression of nitric oxide synthases (NOSs), peroxisome
proliferator-activated receptor gamma (PPARγ), and nuclear factor
kappa-light-chain-enhancer of activated B cells (NF-κB) in mouse
neocortical neurons in vitro. Toxicology in Vitro 73: 105143.
Thongrom, B., Amornpitoksuk, P.,
Suwanboon, S. & Baltrusaitis, J. 2014. Photocatalytic degradation of dye by Ag/ZnO prepared by reduction of Tollen’s
reagent and the ecotoxicity of degraded products. Korean Journal of Chemical Engineering 31: 587-592.
Vargas, G., Hernandez, I., Hopfl, H., Ochoa, M.E., Castillo, D., Farfan, N., Santillan, R.
& Gomez, E. 2004. Preparation and structural
characterization of three types of homo- and heterotrinuclear boron complexes:
Salen{[B-O-B][O2BOH]}, salen{[B-O-B][O2BPh]},
and salen{[B-O-B][O2P(O)Ph]}. Inorganic Chemistry 43(26): 8490-8500.
Verma, M., Bhaduri, G.A., Kumar, V.S.P. & Deshpande, P.A. 2021. Biomimetic catalysis of CO2 hydration: A materials perspective. Industrial &
Engineering Chemistry Research 60(13): 4777-4793.
Wang, W., Nadagouda,
M.N. & Mukhopadhyay, S.M.
2021. Flexible reusable hierarchical hybrid catalyst for rapid and complete
degradation of triclosan in water. Science
of the Total Environment 766: 144109.
Wang, S.Z. & Wang, J.L. 2018. Degradation of triclosan and its main
intermediates during the combined irradiation and biological treatment. Environmental Technology 39(9): 1115-1122.
Wilburn, W.J., Jamal, S., Ismail, F., Brooks, D. & Whalen, M. 2021. Evaluation
of triclosan exposures on secretion of pro-inflammatory cytokines from human
immune cells. Environmental Toxicology and Pharmacology 83: 103599.
Wu, S.S., Lan, D.H., Tan, N.Y., Wang, R., Au, C.T. & Yi, B. 2021. Manganese Schiff base immobilized on graphene oxide complex and its catalysis for
epoxidation of styrene. Journal of
the ChemicalSociety of Pakistan 43(1): 57-66.
Yunarti, R.T., Safitri, T.N., Dimonti, L.C.C., Aulia, G., Khalil, M. & Ridwan, M. 2022. Facile
synthesis of composite between titania nanoparticles with highly exposed (001)
facet and coconut shell-derived graphene oxide for photodegradation of
methylene blue. Journal of Physics and Chemistry of Solids 160: 110357.
Zhao, X., Zhang, P., Zhao, Y.,
Zhang, W., Meng, L., Hou, H., Liu, B., Yang, J. & Hu, J.
2019. The degradation of pollutants catalyzed by metalloporphyrin derivatives. Environmental Chemistry 38(9): 2067-2080.
Zhao, X.J., Ruan, W.J., Zhang, Y.H., Dai, F., Liu, D., Zhu, Z.A. & Fan, S.D. 2006. Molecular recognition of porphyrin-salen compound
towards N-heterocyclic-guests. Chinese Journal of Chemistry 24(8): 1031-1036.
Zhao, X.J., Ruan, W.J. & Zhu,
Z.A. 2006. Study on
synthesis and spectral properties of porphyrin-salen compounds. Chinese Journal of Organic Chemistry 26(8): 1087-1092.
Zhou, X.F. 2020. A
one-pot catalysis combining laccase with Cu(salen) for selective removal of
refractory lignin units during oxygen delignification of bamboo kraft pulp. Scientia
Forestalis 127: 39.
Zhou,
X.F. & Lu, X. 2016. Co(salen) supported on graphene oxide for oxidation of lignin. Journal of
Applied Polymer Science 133(44): 44133.
*Corresponding
author; email: lgdx602@sina.com
|