Sains Malaysiana 51(6)(2022):
1799-1810
http://doi.org/10.17576/jsm-2022-5106-16
Kehadiran Interaksi Supramolekul dalam Sebatian Polimer Koordinatan Baharu Terbitan Ligan N,N’-2,6-bis(3-piridilmetil)piridina Dikarboksiamida
(Presence of Supramolecule Interaction in New
Coordination Polimer Compound Derive Ligand N,N’-2,6-bis(3-pyridylmethyl)pyridine Dicarboxyamide)
NAFISAH MANSOR1,*,
NUR SHUHAILA HARYANI HARIS1 & MAISARA ABDUL KADIR1,2
1Fakulti Sains dan Sekitaran Marin, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu Darul Iman, Malaysia
2Kumpulan Penyelidikan Bahan Termaju Nano (ANoMa), Fakulti Sains dan Sekitaran Marin, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu Darul Iman, Malaysia
Received: 23 August 2021/ Accepted: 20 November 2021
ABSTRAK
Kehadiran beberapa interaksi supramolekul seperti ikatan hidrogen dan susunan pi-pi adalah penting bukan sahaja untuk menstabilkan struktur molekul tetapi juga memainkan peranan sebagai molekul perumah. Oleh itu, dalam kajian ini, ligan berasaskan amida yang mempunyai bentuk U iaitu N,N’-2,6-bis(3-piridilmetil)piridina dikarboksiamida (L1) telah digunakan sebagai ligan yang berupaya membentuk ikatan hidrogen dengan anion, dan kajian ini berfokus kepada peranannya dalam keadaan polimer koordinatan. Sebagai permulaan, L1 ditindakbalas dengan beberapa logam peralihan melalui kaedah penyejatan perlahan untuk menghasilkan tiga polimer koordinatan yang baharu. Polimer koordinatan ini mempunyai formula molekul, {[Cd(L1)2(H2O)2](NO3)2.H2O}n (1), {[Cd(L1)2(H2O)2](ClO4)2}n (2) dan {[Co(L1)2(H2O)2](NO3)2}n (3) yang dicirikan melalui analisis unsur, FTIR spektroskopi dan kristalografi sinar-X. Polimer koordinatan 1, 2 and 3 menghablur dalam sistem triklinik dan kumpulan ruang P-1. Konformasi sebatian ini digambarkan sebagai logam-makrosiklik dinuklear yang tersusun seperti rantai leher. L1 didapati bersambung melalui logampusat daripada atom nitrogen, secara berulang-ulang untuk membentuk jaringan satu dimensi. Struktur molekul sebatian baharu ini distabilkan oleh kehadiran ikatan hidrogen intermolekul dan intramolekul,
yang terjadi di kawasan NH amida, serta susunan pi-pi di antara gelang aromatik piridina. Dalam struktur hablur ini juga, jaringan metilina membentuk ikatan hidrogen dengan kaunter anion pada moieti2,6-piridina dikarboksamida, menunjukkan potensi sebagai sebatian penerima anion. Kajian DFT telah dijalankan untuk mengenal pasti tenaga interaksi kompleks.
Kata kunci: Ikatan hidrogen; isomorfus; penerima anion; polimer koordinatan; rantaian; 2,6-piridina dikarboksamida
ABSTRACT
The
presence of several supramolecular interactions such as hydrogen bonds and
pi-pi arrangements are important not only to stabilize the molecular structure,
but also to play a role as a host molecule. Therefore, in this study, an
amide-based ligand that has a U shape namely N,N’-2,6-bis(3-pyridylmethyl)pyridine
dicarboxamide (L1) was
used as a ligand capable of forming hydrogen bonds with anions, and this study
focusing on its role in the coordination polymer state. For a start, L1 was
reacted with several transition metals via a slow evaporation method to produce
three new coordination polymers. This coordination polymer has the molecular
formula, {[Cd(L1)2(H2O)2](NO3)2.H2O}n (1), {[Cd(L1)2(H2O)2](ClO4)2}n (2) dan {[Co(L1)2(H2O)2](NO3)2}n (3) characterized
through elemental analysis, FTIR spectroscopy and X-ray crystallography.
Coordination polymers 1, 2, and 3 crystallize in the triclinic system and the
P-1 space group. The molecular conformation of these compounds is described as
a dinuclear macrocyclic metal arranged like a necklace. L1 was found to connect
through the central metal of the nitrogen atom, repeatedly to form a
one-dimensional network. The molecular structure of this new compound is
stabilized by the presence of intermolecular and intramolecular hydrogen bonds,
which occur in the NH amide region, as well as the pi-pi arrangement between
the pyridine aromatic rings. In this crystal structure as well, the methylene
network forms a hydrogen bond with an anion counter on the 2,6-pyridine
dicarboxamide moiety, indicating the potential of the compound as an anion
acceptor. DFT study is carried out to investigate the interaction energies of
the complexes.
Keywords: Anion receptors; coordination polymers;
hydrogen bond; isomorphous; 2,6-pyridine dicarboxamide
REFERENCES
Ali, R., Ku Bulat, K.H., Azmi, A.A. & Anuar, S.T. 2019. Theoretical approach of DFT B3LYP/6-31G (d,p) on evaluating the performance
of tert-butylhydroquinone and free fatty acids in inhibiting the oxidation of
palm olein. Journal of Palm Oil Research 31(1): 122-129.
Aljammal, N., Jabbour,
C., Chaemchuen, S., Juzsakova,
T. & Verpoort, F. 2019. Flexibility in
metal-organic frameworks: A basic understanding. Catalysts 9: 512.
Banarjee, S., Adarsh, N.N. & Dastidar, P. 2010. Selective separation of the sulfate anion by in situ crystallization of Cdii coordination compounds derived from
bis(pyridyl) ligands equipped with a urea/amide hydrogen-bonding backbone. European
Journal of
Inorganic Chemistry 4: 3770-3779.
Barbour, L.J. 2001. X-Seed - A software tool for supramolecular
crystallography. Journal of
Supramolecular Chemistry 1(4-6):
189-191.
Busschaert, N., Caltagirone,
C., Rossom, W.V. & Gale, P.A. 2015. Applications
of supramolecular anion recognition. Journal
of American Chemical Society 115(15): 8038-8155.
Custelcean, R.
2010. Anions in crystal engineering. Chemical Society Reviews 39:
3675-3685.
Desiraju, G.R. 2002. Hydrogen
bridges in crystal engineering: Interactions without borders. Accounts of Chemical Research 35(7):
565-573.
Duke, R.M. & Gunnlaugsson, T. 2007. Selective
fluorescent PET sensing of fluoride (F−) using naphthalimide–thiourea and–urea conjugates. Tetrahedron Letters 48(5): 8043-8047.
Dutta, B., Jana, R., Bhanja,
A.K., Ray, P.P., Sinha, C. & Mir, M.H. 2019. Supramolecular aggregate of
Cadmium(II)-based one-dimensional coordination polymer for device fabrication
and sensor application. Inorganic Chemistry 58(4): 2686-2694.
Gong, Y., Li, J., Qin, J., Wu, T., Cao, R. & Li, J. 2011. Metal(II)
coordination polymers
derived from bis-pyridyl-bis-amide ligands and carboxylates: Syntheses,
topological structures, and photoluminescence properties. Crystal Growth
Design 11(5): 1662.
Haris, N.S.H., Mansor, N.,
Yusof, M.S.M., Sumby, C.J. & Kadir, M.A. 2021. Investigating the
potential of flexible and pre-organized tetraamide ligands to encapsulate anions in
one-dimensional coordination polymers: Synthesis, spectroscopic studies and
crystal structures. Crystals 11:
77.
Hirata,
G. & Maeda, H. 2018. Pyrrole-based anion-responsive π-electronic
molecules as
hydrogen-bonding catalysts. Organic
Letters 20(10): 2853-2856.
Kadir, M.A., Hanton, L.R. & Sumby,
C.J. 2011. Self-assembled metallo-macrocycle based
coordination polymers with unsymmetrical amide ligands. Dalton Transactions40(45): 12374-12380.
Kadir, M.A., Yusof, M.S.M. & Sumby, C.J.
2018. Conjoint experimental and theoretical evaluation of zinc (II)
coordination polymer as potential anion receptors for nitrate and chromate. ASM
Science Journal 1: 136-146.
Kumar, D.K., Das, A. & Dastidar, P. 2006.
One-dimensional chains, two-dimensional
corrugated sheets having a cross-linked helix in metal−organic
frameworks: Exploring hydrogen-bond capable backbones and ligating topologies in mixed
ligand systems. Crystal Growth & Design 6(8): 1903-1909.
Langton, M.J., Serpell,
C.J. & Beer, P.D. 2016. Anion recognition in water: Recent advances
from a supramolecular and macromolecular perspective. Angewandte Chemie International Edition55(6): 1974-1987.
Leong, W.L. & Vittal, J.J. 2011.
One-dimensional coordination polymers: Complexity and
diversity in structures, properties, and applications. Chemical Reviews 111(2): 688-764.
Mcphillips, T., Mcphillips,
S., Chiu, H., Cohen, A., Deacon, A., Ellis, P., Garman, E.,
Gonzalez, A., Sauter, N., Phizackerley, R., Soltis,
S. & Kuhn, P. 2002. Blu-ice and the
distributed control system: software for data acquisition and instrument
control at
macromolecular crystallography beamlines. Journal
of Synchrotron Radiation 9(6):
401-406.
Miller, F.A. & Wilkins, C.H.
1952. Infrared spectra and characteristic
frequencies of inorganic ions. Analytical
Chemistry 13: 1253-1294.
Neto, J.A.D.N., Silva, C.C.D.,
Ribeiro, L., Valdo, A.K.S.M. & Martins, F.T. 2018. Competition between
coordination bonds and hydrogen bonding interactions in solvatomorphs of
copper(II), cadmium(II) and cobalt(II) complexes with 2,2′-bipyridyl and
acetate. Zeitschrift für Kristallographie - Crystalline Materials 234(2): 119-128.
Qiao,
R., Zhang, Z.Y. & Zhu, M.A. 2017. Synthesis, crystal structure
and water vapor adsorption properties of a porous supramolecular architecture. Crystals 7: 297.
Rachuri,
Y., Parmar, B., Bisht, K.K. & Suresh, E. 2017. Solvothermal self-assembly
of Cd2+ coordination polymers with supramolecular networks involving n-donor
ligands and aromatic dicarboxylates: Synthesis, crystal structure and
photoluminescence studies. Dalton Transactions 46: 3623-3630.
Russ, T.H., Pramanik, A., Khansari, M.E., Wong, B.M. &
Hossain, M.A. 2011. A quinoline
based bis-urea receptor for anions: A selective receptor for hydrogen sulfate. Natural Product Communications 7(3):
301-304.
Salehzadeh,
S., Bayat, M. & Gholiee,
Y. 2013. A theoretical study on the importance of steric
effects, electronic properties, interaction and solvation energies in the
‘host-guest’ chemistry of protonated azacryptands and halide
anions. Tetrahedron 69(4):
9183-9191.
Sheldrick, G.M. 2015. Crystal structure refinement with
SHELXL. Acta Crystallographica Section C: Structural Chemistry 71(1):
3-8.
Sheldrick, G.M. 2008. A short history of SHELX. Acta Crystallographica Section A: Foundations of Crystallography 64(1): 112-122.
Sheldrick, G.M. 1990. Phase
annealing in SHELX-90: Direct methods for larger structures. Acta Crystallographica Section A: Foundations of Crystallography 46(6): 467-473.
Sumby, C.J. & Hanton, L.R.
2009. Syntheses and studies of flexible amide ligands: A
toolkit
for studying metallo-supramolecular assemblies for anion binding. Tetrahedron 65(24):
4681.
You, L., Zha, D. & Anslyn,
E.V. 2015. Recent advances in supramolecular analytical chemistry
using optical sensing. Journal of the
American Chemical Society 115(15): 7840-7892.
Zhang, X., Zhang, Y., Liu, S., Xu,
H., Li, J. & Hou, H. 2014. 0D and 1D PbII complexes constructed from pyridyldicarboxamide by varying the ratios of mixed solvent. Inorganic
Chemistry Communications 46: 289-294.
*Corresponding author; email: maisara@umt.edu.my
|