Sains Malaysiana 51(6)(2022):
1847-1859
http://doi.org/10.17576/jsm-2022-5106-20
Therapeutic Monitoring of Thiopurine Metabolites:
Validation of an HPLC Method and Preliminary Findings from a Small Cohort of
Malaysian Patients with Inflammatory Bowel Disease
(Pemantauan Terapeutik MetabolitTiopurina: Pengesahan Kaedah HPLC dan Penemuan Awal daripada Kohort Kecil Pesakit Malaysia dengan Penyakit Radang Usus)
SHENG ZHANG LIM1, RAJA AFFENDI RAJA ALI2, SUZANA MAKPOL3 & ENG WEE
CHUA1,*
1Centre for Herbal and Drug Development, Faculty of
Pharmacy, Universiti Kebangsaan Malaysia, 50300 Kuala
Lumpur, Federal Territory, Malaysia
2Department of Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, 56000 Cheras, Kuala
Lumpur, Federal Territory, Malaysia
3Department of Biochemistry, Faculty of Medicine, Universiti Kebangsaan Malaysia, 56000 Cheras, Kuala
Lumpur, Federal Territory, Malaysia
Received: 11 October 2021/Accepted: 15 November 2021
ABSTRACT
Thiopurine therapy of inflammatory bowel disease (IBD)
is guided by the relative blood concentrations 6-thioguanine nucleotides
(6-TGN) and 6-methylmercaptopurine (6-MMP). However, their action is altered by in vivo phosphorylation, and this is not normally measured in clinical
studies. Hence, we trialled a novel method for profiling phosphorylated
thiopurine metabolites and revisited the association between thiopurine
metabolites and IBD treatment outcomes. We first optimised and validated a
published high-performance liquid chromatography (HPLC) method for measuring
the blood levels of thioguanosine monophosphate (TGMP), thioguanosine
diphosphate (TGDP), thioguanosine triphosphate (TGTP), and methylthioinosine monophosphate (MeTIMP). Then, we assembled a small
cohort of IBD patients (n=20), who had been treated with azathioprine for at
least three months, and obtained blood samples for analysis of the metabolites.
The patients received treatments at the Universiti Kebangsaan Malaysia Specialist Centre between March 2018
and April 2019. They were classified as responders (n = 12) or non-responders
(n = 6) to azathioprine based on their disease activity scores (CDAI or Mayo
score). The HPLC method was precise with intraday and interday variation < 15% for all the tested metabolites, and the relative accuracy
ranged from 40.2 to 114.0%. We noted that the responders had higher median
6-TGN but lower median TGTP levels than the non-responders. However, the
differences were not statistically significant (Wilcoxon rank-sum tests; 6-TGN,
p = 0.925; TGTP, p = 0.189). The higher median 6-TGN level detected in the
responders is in keeping with the findings of prior studies, suggesting that
HPLC analysis of phosphorylated thiopurine metabolites is both technically
feasible and clinically useful.
Keywords: High-performance liquid chromatography;
inflammatory bowel disease; therapeutic drug monitoring; thiopurine metabolites
ABSTRAK
Rawatan tiopurina untuk penyakit radang usus (IBD) adalah berpandukan
kepekatan nukleotida 6-tioguanina (6-TGN) dan 6-metilmerkaptopurina (6-MMP)
dalam darah. Akan tetapi, tindakan metabolit tiopurina berubah-ubah mengikut
tahap fosforilasi in vivo dan fenomena ini sukar dikesan secara tepat
dalam kajian klinikal. Oleh itu, kami menguji satu kaedah baharu bagi
pengesanan metabolit tiopurina terfosforilasi dan mengkaji semula hubungan
antara metabolit tiopurina dan hasil rawatan IBD. Kami mengoptimumkan dan menilai
prestasi satu kaedah kromatografi cecair prestasi tinggi (HPLC) yang dilaporkan
dalam kajian lepas untuk penentuan paras darah tioguanosina monofosfat (TGMP),
tioguanosina difosfat (TGDP), tioguanosina trifosfat (TGTP) dan metiltioinosina
monofosfat (MeTIMP). Kemudian, kami merekrut sekumpulan kecil pesakit IBD (n =
20) yang telah dirawat dengan azatioprina untuk sekurang-kurangnya tiga bulan
dan memperoleh sampel darah untuk analisis paras metabolit. Pesakit-pesakit
tersebut menerima rawatan di Pusat Perubatan Universiti Kebangsaan Malaysia
antara Mac 2018 dan April 2019. Mereka dikelaskan kepada kumpulan pesakit yang
menunjukkan respons baik terhadap azatioprina, atau responden (n = 12) dan
kumpulan yang gagal rawatan, atau bukan responden (n = 6), berdasarkan aktiviti
penyakit (CDAI atau skor Mayo). Kaedah HPLC tersebut didapati tepat dengan
variasi dalam tempoh sehari dan antara hari < 15% bagi semua metabolit dan
ketepatan relatif antara 40.2% dan 114.0%. Kami mendapati bahawa kumpulan pesakit
responden mempunyai paras median 6-TGN yang lebih tinggi tetapi paras median
TGTP yang lebih rendah daripada pesakit bukan responden. Walau bagaimanapun,
perbezaan tersebut tidak signifikan secara statistik (ujian Wilcoxon; 6-TGN, p = 0.925; TGTP, p = 0.189). Selaras dengan kajian terdahulu, kajian ini
mendapati bahawa paras median 6-TGN adalah lebih tinggi dalam kalangan pesakit
responden. Ini mencadangkan bahawa analisis HPLC metabolit tiopurina
terfosforilasi boleh dilaksanakan dan adalah berguna untuk amalan klinikal.
Kata kunci: Kromatografi cecair
berprestasi tinggi (HPLC); metabolit tiopurina; pemantauan ubat terapeutik;
penyakit radang usus
References
Best, W.R., Becktel, J.M.,
Singleton, J.W. & Kern, F. 1976. Development of a Crohn’s disease activity
index: National Cooperative Crohn’s Disease Study. Gastroenterology 70(3):
439-444.
Coulthard, S.A., Hogarth, L.A., Little, M., Matheson, E.C.,
Redfern, C.P.F., Minto, L. & Hall, A.G. 2002. The effect of thiopurine
methyltransferase expression on sensitivity to thiopurine drugs. Molecular
Pharmacology 62(1): 102-109.
D’Alessandro, A., Dzieciatkowska,
M., Nemkov, T. & Hansen, K.C. 2017. Red blood
cell proteomics update: Is there more to discover? Blood Transfusion 15(2): 182-187.
D’Haens, G., Sandborn, W.J., Feagan, B.G., Geboes, K., Hanauer, S.B., Irvine, E.J., Lémann,
M., Marteau, P., Rutgeerts, P., Schölmerich,
J. & Sutherland, L.R. 2007. A review of activity indices and efficacy end
points for clinical trials of medical therapy in adults with ulcerative
colitis. Gastroenterology 132(2): 763-786.
Derijks, L.J.J., Gilissen, L.P.L.,
Engels, L.G.J.B., Bos, L.P., Bus, P.J., Lohman, J.J.H.M., Curvers,
W.L., Van Deventer, S.J.H., Hommes, D.W. & Hooymans,
P.M. 2004. Pharmacokinetics of 6-mercaptopurine in patients with inflammatory
bowel disease: Implications for therapy. Therapeutic Drug Monitoring 26(3):
311-318.
Fangbin, Z., Xiang, G.,
Liang, D., Hui, L., Xueding, W., Baili,
C., Huichang, B., Yinglian,
X., Peng, C., Lizi, Z., Yanjun,
C., Feng, X., Minhu, C., Min, H. & Pinjin, H. 2016. Prospective evaluation of pharmacogenomics
and metabolite measurements upon azathioprine therapy in inflammatory bowel
disease. Medicine 95(15): e3326.
Feng,
R., Guo, J., Zhang, S., Qiu, Y., Chen, B., He, Y.,
Zeng, Z., Ben-Horin, S., Chen, M. & Mao, R. 2018.
Low 6-thioguanine nucleotide level: Effective in maintaining remission in
Chinese patients with Crohn’s disease. Journal of Gastroenterology and
Hepatology 34(4): 679-685.
FDA. 2018. Guidance for Industry: Bioanalytical
Method Validation. U.S. Food and Drug Administration.
Feuerstein, J.D., Nguyen, G.C., Kupfer, S.S., Falck-Ytter, Y., Singh, S. & American Gastroenterological
Association Institute Clinical Guidelines Committee. 2017. American
Gastroenterological Association Institute guideline on therapeutic drug
monitoring in inflammatory bowel disease. Gastroenterology 153(3):
827-834.
Haglund, S., Vikingsson, S., Söderman, J., Hindorf, U., Grännö, C., Danelius, M., Coulthard, S., Peterson, C. & Almer, S. 2011. The role
of inosine-5’-monophosphate dehydrogenase in thiopurine metabolism
in patients with inflammatory bowel disease. Therapeutic Drug Monitoring 33(2): 200-208.
Karim, H., Ghalali, A., Lafolie, P., Vitols, S. & Fotoohi, A.K. 2013. Differential role of thiopurine
methyltransferase in the cytotoxic effects of 6-mercaptopurine and
6-thioguanine on human leukemia cells. Biochemical
and Biophysical Research Communications 437(2): 280-286.
Karner, S., Shi, S., Fischer, C., Schaeffeler,
E., Neurath, M.F., Herrlinger,
K.R., Hofmann, U. & Schwab, M. 2010. Determination of 6-thioguanosine
diphosphate and triphosphate and nucleoside diphosphate kinase activity in
erythrocytes: Novel targets for thiopurine therapy? Therapeutic Drug
Monitoring 32(2): 119-128.
Lavi, L.E. & Holcenberg,
J.S. 1985. A rapid and sensitive high-performance liquid chromatographic assay
for 6-mercaptopurine metabolites in red blood cells. Analytical Biochemistry 144(2): 514-521.
Lee,
J.H., Kim, T.J., Kim, E.R., Hong, S.N., Chang, D.K., Choi, L.H., Woo, H.I.,
Lee, S.Y. & Kim, Y.H. 2017. Measurements of 6-thioguanine nucleotide levels
with TPMT and NUDT15 genotyping in patients with Crohn’s disease. PLoS ONE 12(12): e0188925.
Lennard, L. & Singleton, H.J. 1992.
High-performance liquid chromatographic assay of the methyl and nucleotide
metabolites of 6-mercaptopurine: Quantitation of red blood cell 6-thioguanine
nucleotide, 6-thioinosinic acid and 6-methylmercaptopurine metabolites in a
single sample. Journal of Chromatography B: Biomedical Sciences and
Applications 583(1): 83-90.
Liu,
Q., Wang, Y., Mei, Q., Han, W., Hu, J. & Hu, N. 2016. Measurement of red blood cell
6-thioguanine nucleotide is beneficial in azathioprine maintenance therapy of
Chinese Crohn’s disease patients. Scandinavian Journal of Gastroenterology 51(9): 1093-1099.
Neurath, M.F., Kiesslich, R., Teichgräber, U., Fischer, C., Hofmann, U., Eichelbaum, M., Galle, P.R. & Schwab, M. 2005.
6-Thioguanosine diphosphate and triphosphate levels in red blood cells and
response to azathioprine therapy in Crohn’s disease. Clinical
Gastroenterology and Hepatology 3(10): 1007-1014.
Pozler, O., Chládek, J., Malỳ, J., Hroch, M., Dědek, P., Beránek, M. & Krásničanová, P. 2010. Steady-state of
azathioprine during initiation treatment of pediatric inflammatory bowel disease. Journal of Crohn’s and Colitis 4(6):
623-628.
Rabel, S.R., Stobaugh, J.F. & Trueworthy, R. 1995. Determination of intracellular
levels of 6-mercaptopurine metabolites in erythrocytes utilizing capillary
electrophoresis with laser-induced fluorescence detection. Analytical
Biochemistry 224(1): 315-322.
Relling, M.V., Gardner, E.E., Sandborn,
W.J., Schmiegelow, K., Pui,
C.H., Yee, S.W., Stein, C.M., Carrillo, M., Evans, W.E., Klein, T.E. &
Clinical Pharmacogenetics Implementation Consortium. 2011. Clinical Pharmacogenetics
Implementation Consortium guidelines for thiopurine methyltransferase genotype
and thiopurine dosing. Clinical Pharmacology and Therapeutics 89(3):
387-391.
Rutgeerts, P., Sandborn, W.J., Feagan, B.G., Reinisch, W.,
Olson, A., Johanns, J., Travers, S., Rachmilewitz, D., Hanauer, S.B.,
Lichtenstein, G.R., de Villiers, W.J.S., Present, D., Sands, B.E. & Colombel, J.F. 2005. Infliximab for induction and
maintenance therapy for ulcerative colitis. New England Journal of Medicine 353(23): 2462-2476.
Selinger, C.P., Ochieng, A.O., George, V. & Leong,
R.W. 2019. The accuracy of adherence self-report scales in patients on
thiopurines for inflammatory bowel disease: A comparison with drug metabolite
levels and medication possession ratios. Inflammatory Bowel Diseases 25(5): 919-924.
Shin, J.Y., Wey, M., Umutesi,
H.G., Sun, X., Simecka, J. & Heo,
J. 2016. Thiopurine prodrugs mediate immunosuppressive effects by interfering
with Rac1 protein function. Journal of Biological Chemistry 291(26):
13699-13714.
Vande Casteele, N., Herfarth, H., Katz, J., Falck-Ytter,
Y. & Singh, S. 2017. American Gastroenterological Association Institute
technical review on the role of therapeutic drug monitoring in the management
of inflammatory bowel diseases. Gastroenterology 153(3): 835-857.e6.
Vikingsson, S., Almer, S., Peterson, C., Carlsson, B. & Josefsson, M. 2013. Monitoring of thiopurine metabolites -
A high-performance liquid chromatography method for clinical use. Journal of
Pharmaceutical and Biomedical Analysis 75: 145-152.
Vikingsson, S., Carlsson, B., Almer, S. & Peterson, C. 2010.
How should thiopurine treatment be monitored? Methodological aspects. Nucleosides,
Nucleotides and Nucleic Acids 29(4-6): 278-283.
Vikingsson, S., Carlsson, B., Almer, S.H.C. & Peterson, C.
2009. Monitoring of thiopurine metabolites in patients with inflammatory bowel
disease - what is actually measured? Therapeutic Drug Monitoring 31(3):
345-350.
Zaza, G., Cheok, M., Krynetskaia,
N., Thorn, C., Stocco, G., Hebert, J.M., McLeod, H., Weinshilboum, R.M., Relling,
M.V., Evans, W.E., Klein, T.E. & Altman, R.B. 2010. Thiopurine pathway. Pharmacogenetics
and Genomics 20(9): 573-574.
*Corresponding author;
email: cew85911@ukm.edu.my
|