Sains Malaysiana 51(6)(2022): 1847-1859

http://doi.org/10.17576/jsm-2022-5106-20

 

Therapeutic Monitoring of Thiopurine Metabolites: Validation of an HPLC Method and Preliminary Findings from a Small Cohort of Malaysian Patients with Inflammatory Bowel Disease

(Pemantauan Terapeutik MetabolitTiopurina: Pengesahan Kaedah HPLC dan Penemuan Awal daripada Kohort Kecil Pesakit Malaysia dengan Penyakit Radang Usus)

 

SHENG ZHANG LIM1, RAJA AFFENDI RAJA ALI2, SUZANA MAKPOL3 & ENG WEE CHUA1,*

 

1Centre for Herbal and Drug Development, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, 50300 Kuala Lumpur, Federal Territory, Malaysia

2Department of Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, 56000 Cheras, Kuala Lumpur, Federal Territory, Malaysia

3Department of Biochemistry, Faculty of Medicine, Universiti Kebangsaan Malaysia, 56000 Cheras, Kuala Lumpur, Federal Territory, Malaysia

 

Received: 11 October 2021/Accepted: 15 November 2021

 

ABSTRACT

Thiopurine therapy of inflammatory bowel disease (IBD) is guided by the relative blood concentrations 6-thioguanine nucleotides (6-TGN) and 6-methylmercaptopurine (6-MMP). However, their action is altered by in vivo phosphorylation, and this is not normally measured in clinical studies. Hence, we trialled a novel method for profiling phosphorylated thiopurine metabolites and revisited the association between thiopurine metabolites and IBD treatment outcomes. We first optimised and validated a published high-performance liquid chromatography (HPLC) method for measuring the blood levels of thioguanosine monophosphate (TGMP), thioguanosine diphosphate (TGDP), thioguanosine triphosphate (TGTP), and methylthioinosine monophosphate (MeTIMP). Then, we assembled a small cohort of IBD patients (n=20), who had been treated with azathioprine for at least three months, and obtained blood samples for analysis of the metabolites. The patients received treatments at the Universiti Kebangsaan Malaysia Specialist Centre between March 2018 and April 2019. They were classified as responders (n = 12) or non-responders (n = 6) to azathioprine based on their disease activity scores (CDAI or Mayo score). The HPLC method was precise with intraday and interday variation < 15% for all the tested metabolites, and the relative accuracy ranged from 40.2 to 114.0%. We noted that the responders had higher median 6-TGN but lower median TGTP levels than the non-responders. However, the differences were not statistically significant (Wilcoxon rank-sum tests; 6-TGN, p = 0.925; TGTP, p = 0.189). The higher median 6-TGN level detected in the responders is in keeping with the findings of prior studies, suggesting that HPLC analysis of phosphorylated thiopurine metabolites is both technically feasible and clinically useful.

 

Keywords: High-performance liquid chromatography; inflammatory bowel disease; therapeutic drug monitoring; thiopurine metabolites

 

ABSTRAK

Rawatan tiopurina untuk penyakit radang usus (IBD) adalah berpandukan kepekatan nukleotida 6-tioguanina (6-TGN) dan 6-metilmerkaptopurina (6-MMP) dalam darah. Akan tetapi, tindakan metabolit tiopurina berubah-ubah mengikut tahap fosforilasi in vivo dan fenomena ini sukar dikesan secara tepat dalam kajian klinikal. Oleh itu, kami menguji satu kaedah baharu bagi pengesanan metabolit tiopurina terfosforilasi dan mengkaji semula hubungan antara metabolit tiopurina dan hasil rawatan IBD. Kami mengoptimumkan dan menilai prestasi satu kaedah kromatografi cecair prestasi tinggi (HPLC) yang dilaporkan dalam kajian lepas untuk penentuan paras darah tioguanosina monofosfat (TGMP), tioguanosina difosfat (TGDP), tioguanosina trifosfat (TGTP) dan metiltioinosina monofosfat (MeTIMP). Kemudian, kami merekrut sekumpulan kecil pesakit IBD (n = 20) yang telah dirawat dengan azatioprina untuk sekurang-kurangnya tiga bulan dan memperoleh sampel darah untuk analisis paras metabolit. Pesakit-pesakit tersebut menerima rawatan di Pusat Perubatan Universiti Kebangsaan Malaysia antara Mac 2018 dan April 2019. Mereka dikelaskan kepada kumpulan pesakit yang menunjukkan respons baik terhadap azatioprina, atau responden (n = 12) dan kumpulan yang gagal rawatan, atau bukan responden (n = 6), berdasarkan aktiviti penyakit (CDAI atau skor Mayo). Kaedah HPLC tersebut didapati tepat dengan variasi dalam tempoh sehari dan antara hari < 15% bagi semua metabolit dan ketepatan relatif antara 40.2% dan 114.0%. Kami mendapati bahawa kumpulan pesakit responden mempunyai paras median 6-TGN yang lebih tinggi tetapi paras median TGTP yang lebih rendah daripada pesakit bukan responden. Walau bagaimanapun, perbezaan tersebut tidak signifikan secara statistik (ujian Wilcoxon; 6-TGN, p = 0.925; TGTP, p = 0.189). Selaras dengan kajian terdahulu, kajian ini mendapati bahawa paras median 6-TGN adalah lebih tinggi dalam kalangan pesakit responden. Ini mencadangkan bahawa analisis HPLC metabolit tiopurina terfosforilasi boleh dilaksanakan dan adalah berguna untuk amalan klinikal.

 

Kata kunci: Kromatografi cecair berprestasi tinggi (HPLC); metabolit tiopurina; pemantauan ubat terapeutik; penyakit radang usus

 

References

Best, W.R., Becktel, J.M., Singleton, J.W. & Kern, F. 1976. Development of a Crohn’s disease activity index: National Cooperative Crohn’s Disease Study. Gastroenterology 70(3): 439-444.

Coulthard, S.A., Hogarth, L.A., Little, M., Matheson, E.C., Redfern, C.P.F., Minto, L. & Hall, A.G. 2002. The effect of thiopurine methyltransferase expression on sensitivity to thiopurine drugs. Molecular Pharmacology 62(1): 102-109.

D’Alessandro, A., Dzieciatkowska, M., Nemkov, T. & Hansen, K.C. 2017. Red blood cell proteomics update: Is there more to discover? Blood Transfusion 15(2): 182-187.

D’Haens, G., Sandborn, W.J., Feagan, B.G., Geboes, K., Hanauer, S.B., Irvine, E.J., Lémann, M., Marteau, P., Rutgeerts, P., Schölmerich, J. & Sutherland, L.R. 2007. A review of activity indices and efficacy end points for clinical trials of medical therapy in adults with ulcerative colitis. Gastroenterology 132(2): 763-786.

Derijks, L.J.J., Gilissen, L.P.L., Engels, L.G.J.B., Bos, L.P., Bus, P.J., Lohman, J.J.H.M., Curvers, W.L., Van Deventer, S.J.H., Hommes, D.W. & Hooymans, P.M. 2004. Pharmacokinetics of 6-mercaptopurine in patients with inflammatory bowel disease: Implications for therapy. Therapeutic Drug Monitoring 26(3): 311-318.

Fangbin, Z., Xiang, G., Liang, D., Hui, L., Xueding, W., Baili, C., Huichang, B., Yinglian, X., Peng, C., Lizi, Z., Yanjun, C., Feng, X., Minhu, C., Min, H. & Pinjin, H. 2016. Prospective evaluation of pharmacogenomics and metabolite measurements upon azathioprine therapy in inflammatory bowel disease. Medicine 95(15): e3326.

Feng, R., Guo, J., Zhang, S., Qiu, Y., Chen, B., He, Y., Zeng, Z., Ben-Horin, S., Chen, M. & Mao, R. 2018. Low 6-thioguanine nucleotide level: Effective in maintaining remission in Chinese patients with Crohn’s disease. Journal of Gastroenterology and Hepatology 34(4): 679-685.

FDA. 2018. Guidance for Industry: Bioanalytical Method Validation. U.S. Food and Drug Administration.

Feuerstein, J.D., Nguyen, G.C., Kupfer, S.S., Falck-Ytter, Y., Singh, S. & American Gastroenterological Association Institute Clinical Guidelines Committee. 2017. American Gastroenterological Association Institute guideline on therapeutic drug monitoring in inflammatory bowel disease. Gastroenterology 153(3): 827-834.

Haglund, S., Vikingsson, S., Söderman, J., Hindorf, U., Grännö, C., Danelius, M., Coulthard, S., Peterson, C. & Almer, S. 2011. The role of inosine-5-monophosphate dehydrogenase in thiopurine metabolism in patients with inflammatory bowel disease. Therapeutic Drug Monitoring 33(2): 200-208.

Karim, H., Ghalali, A., Lafolie, P., Vitols, S. & Fotoohi, A.K. 2013. Differential role of thiopurine methyltransferase in the cytotoxic effects of 6-mercaptopurine and 6-thioguanine on human leukemia cells. Biochemical and Biophysical Research Communications 437(2): 280-286.

Karner, S., Shi, S., Fischer, C., Schaeffeler, E., Neurath, M.F., Herrlinger, K.R., Hofmann, U. & Schwab, M. 2010. Determination of 6-thioguanosine diphosphate and triphosphate and nucleoside diphosphate kinase activity in erythrocytes: Novel targets for thiopurine therapy? Therapeutic Drug Monitoring 32(2): 119-128.

Lavi, L.E. & Holcenberg, J.S. 1985. A rapid and sensitive high-performance liquid chromatographic assay for 6-mercaptopurine metabolites in red blood cells. Analytical Biochemistry 144(2): 514-521.

Lee, J.H., Kim, T.J., Kim, E.R., Hong, S.N., Chang, D.K., Choi, L.H., Woo, H.I., Lee, S.Y. & Kim, Y.H. 2017. Measurements of 6-thioguanine nucleotide levels with TPMT and NUDT15 genotyping in patients with Crohn’s disease. PLoS ONE 12(12): e0188925.

Lennard, L. & Singleton, H.J. 1992. High-performance liquid chromatographic assay of the methyl and nucleotide metabolites of 6-mercaptopurine: Quantitation of red blood cell 6-thioguanine nucleotide, 6-thioinosinic acid and 6-methylmercaptopurine metabolites in a single sample. Journal of Chromatography B: Biomedical Sciences and Applications 583(1): 83-90.

Liu, Q., Wang, Y., Mei, Q., Han, W., Hu, J. & Hu, N.  2016. Measurement of red blood cell 6-thioguanine nucleotide is beneficial in azathioprine maintenance therapy of Chinese Crohn’s disease patients. Scandinavian Journal of Gastroenterology 51(9): 1093-1099.

Neurath, M.F., Kiesslich, R., Teichgräber, U., Fischer, C., Hofmann, U., Eichelbaum, M., Galle, P.R. & Schwab, M. 2005. 6-Thioguanosine diphosphate and triphosphate levels in red blood cells and response to azathioprine therapy in Crohn’s disease. Clinical Gastroenterology and Hepatology 3(10): 1007-1014.

Pozler, O., Chládek, J., Malỳ, J., Hroch, M., Dědek, P., Beránek, M. & Krásničanová, P. 2010. Steady-state of azathioprine during initiation treatment of pediatric inflammatory bowel disease. Journal of Crohn’s and Colitis 4(6): 623-628.

Rabel, S.R., Stobaugh, J.F. & Trueworthy, R. 1995. Determination of intracellular levels of 6-mercaptopurine metabolites in erythrocytes utilizing capillary electrophoresis with laser-induced fluorescence detection. Analytical Biochemistry 224(1): 315-322.

Relling, M.V., Gardner, E.E., Sandborn, W.J., Schmiegelow, K., Pui, C.H., Yee, S.W., Stein, C.M., Carrillo, M., Evans, W.E., Klein, T.E. & Clinical Pharmacogenetics Implementation Consortium. 2011. Clinical Pharmacogenetics Implementation Consortium guidelines for thiopurine methyltransferase genotype and thiopurine dosing. Clinical Pharmacology and Therapeutics 89(3): 387-391.

Rutgeerts, P., Sandborn, W.J., Feagan, B.G., Reinisch, W., Olson, A., Johanns, J., Travers, S., Rachmilewitz, D., Hanauer, S.B., Lichtenstein, G.R., de Villiers, W.J.S., Present, D., Sands, B.E. & Colombel, J.F. 2005. Infliximab for induction and maintenance therapy for ulcerative colitis. New England Journal of Medicine 353(23): 2462-2476.

Selinger, C.P., Ochieng, A.O., George, V. & Leong, R.W. 2019. The accuracy of adherence self-report scales in patients on thiopurines for inflammatory bowel disease: A comparison with drug metabolite levels and medication possession ratios. Inflammatory Bowel Diseases 25(5): 919-924.

Shin, J.Y., Wey, M., Umutesi, H.G., Sun, X., Simecka, J. & Heo, J. 2016. Thiopurine prodrugs mediate immunosuppressive effects by interfering with Rac1 protein function. Journal of Biological Chemistry 291(26): 13699-13714.

Vande Casteele, N., Herfarth, H., Katz, J., Falck-Ytter, Y. & Singh, S. 2017. American Gastroenterological Association Institute technical review on the role of therapeutic drug monitoring in the management of inflammatory bowel diseases. Gastroenterology 153(3): 835-857.e6.

Vikingsson, S., Almer, S., Peterson, C., Carlsson, B. & Josefsson, M. 2013. Monitoring of thiopurine metabolites - A high-performance liquid chromatography method for clinical use. Journal of Pharmaceutical and Biomedical Analysis 75: 145-152.

Vikingsson, S., Carlsson, B., Almer, S. & Peterson, C. 2010. How should thiopurine treatment be monitored? Methodological aspects. Nucleosides, Nucleotides and Nucleic Acids 29(4-6): 278-283.

Vikingsson, S., Carlsson, B., Almer, S.H.C. & Peterson, C. 2009. Monitoring of thiopurine metabolites in patients with inflammatory bowel disease - what is actually measured? Therapeutic Drug Monitoring 31(3): 345-350.

Zaza, G., Cheok, M., Krynetskaia, N., Thorn, C., Stocco, G., Hebert, J.M., McLeod, H., Weinshilboum, R.M., Relling, M.V., Evans, W.E., Klein, T.E. & Altman, R.B. 2010. Thiopurine pathway. Pharmacogenetics and Genomics 20(9): 573-574.

 

*Corresponding author; email: cew85911@ukm.edu.my

   

previous