Sains Malaysiana 51(6)(2022):
1885-1894
http://doi.org/10.17576/jsm-2022-5106-23
Pencirian dan Perbandingan Serbuk Aloi Titanium (Ti6Al4V)
yang Digunakan dalam Peleburan Laser Selektif (SLM)
(Characterisation and Comparison
of Titanium Alloy (Ti6Al4V) Powders Used in Selective Laser Melting (SLM))
FARHANA MOHD
FOUDZI*, FATHIN ILIANA JAMHARI & MINHALINA AHMAD BUHAIRI
Jabatan Kejuruteraan Mekanikal dan Pembuatan, Fakulti Kejuruteraan dan Alam Bina, Universiti Kebangsaan Malaysia, 43600
UKM Bangi, Selangor Darul Ehsan, Malaysia
Received: 28 August 2021/ Accepted: 30
October 2021
Abstrak
Ciri serbuk aloi titanium (Ti6Al4V) yang digunakan dalam pembuatan aditif logam (MAM) amat penting dalam menjamin mutu produk yang dihasilkan. Salah satu teknologi dalam MAM adalah Peleburan Laser Selektif (SLM). Mesin pencetakan SLM telah dibangunkan oleh beberapa syarikat seperti SLM Solutions Group AG dan Renishaw PLC. Bagi menjamin kualiti produk mesin masing-masing, setiap syarikat menghasilkan serbuk logam tersendiri.
Hal ini membataskan potensi penggunaan SLM kerana pengguna tidak boleh menggunakan serbuk logam mereka sendiri. Maka, kajian ini bertujuan untuk mengkaji perbezaan antara serbuk Ti6Al4V yang dihasilkan oleh SLM Solutions dan Renishaw, dan juga menentukan ciri serbuk Ti6Al4V yang sesuai untuk kaedah SLM. Pencirian sampel serbuk telah dilakukan bagi mengkaji bentuk dan saiz zarah, rencaman kimia dan struktur kristalografi. Sampel serbuk Ti6Al4V daripada SLM
Solutions dan Renishaw masing-masing ditandakan sebagai S1 dan S2. Analisis SEM menunjukkan sampel S2 mempunyai bentuk sfera yang lebih sempurna berbanding sampel S1. Analisis rencaman kimia menunjukkan kedua-dua sampel mempunyai taburan unsur kimia yang serupa dengan nilai kajian lampau. Selain itu, analisis taburan saiz zarah menunjukkan saiz zarah S1 dan S2 adalah kurang daripada 45 µm dengan nilai tersebut masih dalam lingkungan yang boleh diterima dalam MAM iaitu 10 hingga 60 µm. Analisis XRD menunjukkan kedua-dua sampel mempunyai puncak keamatan dan struktur kristal berbentuk heksagon yang serupa. Diharapkan makalah ini dapat dijadikan panduan bagi mereka yang ingin menghasilkan sendiri serbuk Ti6Al4V bagi penggunaan proses fabrikasi SLM.
Kata kunci: Peleburan laser selektif (SLM); pencirian serbuk logam; Ti6Al4V
Abstract
Properties
of titanium alloy (Ti6Al4V) powder used in Metal Additive Manufacturing (MAM)
is critical to finished product's performance. MAM technologies include
Selective Laser Melting (SLM) method. Several companies in the industry, including
SLM Solutions Group AG and Renishaw PLC, have developed the SLM printing
machine. To guarantee the quality of their goods, the companies created their
own unique Ti6Al4V powders. Due to end-users not permitted to utilise their own
powders, the potential for SLM usage is limited. Thus, the aim of this study
was to compare the Ti6Al4V powders made by SLM Solutions and Renishaw, and
determine the suitable range of Ti6Al4V powder properties needed for SLM
method. Powder samples were characterised to determine their particle shape and
size, chemical composition, and crystal structure. The Ti6Al4V powders from SLM
Solutions and Renishaw are denoted as S1 and S2, respectively. SEM analysis
showed that S2
sample contains nearly spherical particles compared to S1.
Analysis of chemical composition showed that both samples correspond to
previously reported values. Moreover, the particle size distributions of both
samples are within the permissible range of MAM which is 10 to 60 µm. XRD
analysis proved that both samples have the same Bragg’s peaks and hexagonal
crystal str
ucture. It is hoped that this article may help those who aim
to manufacture their own Ti6Al4V powders for SLM fabrication method.
Keywords:
Powder characterisation; selective laser melting (SLM); Ti6Al4V
REFERENCES
Dawes, J.,
Bowerman, R. & Trepleton, R. 2015. Introduction to the additive
manufacturing powder metallurgy supply chain. Johnson Matthey Technology
Review 59(3): 243-256. doi:10.1595/205651315X688686
DebRoy,
T., Wei, H.L., Zuback, J.S., Mukherjee, T., Elmer, J.W., Milewski, J.O., Beese,
A.M., Wilson-Heid, A.D., De, A. & Zhang, W. 2018. Additive manufacturing of
metallic components - Process, structure and properties. Progress in
Materials Science 92: 112-224. doi:10.1016/j.pmatsci.2017.10.001
Foudzi,
F.M., Buhairi, M.A., Jamhari, F.I., Sulong, A.B., Harun, W.S.W. &
Al-Furjan, M.S. H. 2021. Effect of energy density on properties of additive
manufactured Ti6Al4V via SLM. Powder Met 21 hlm. 434-449.
Foudzi,
F.M., Buhairi, M.A. & Jamhari, F.I. 2020. Influence of processing
parameters of selective laser melting (SLM) on additive manufactured titanium
alloy (Ti6Al4V). In Proceedings of Mechanical Engineering Research Day. pp. 55-57.
Haferkamp,
L., Haudenschild, L., Spierings, A., Wegener, K., Riener, K., Ziegelmeier, S.
& Leichtfried, G.J. 2021. The influence of particle shape, powder
flowability, and powder layer density on part density in laser powder bed
fusion. Metals 11(3): 418. doi:10.3390/met11030418
Herzog,
D., Seyda, V., Wycisk, E. & Emmelmann, C. 2016. Additive manufacturing of
metals. Acta Materialia 117: 371-392. doi:10.1016/j.actamat.2016.07.019
Konečná,
R., Medvecká, D. & Nicoletto, G. 2019. Structure, texture and tensile
properties of Ti6Al4V produced by selective laser melting. Production
Engineering Archives 25(25): 60-65. doi:10.30657/pea.2019.25.12
Kuo,
C., Su, C. & Chiang, A. 2017. Parametric optimization of density and dimensions
in three-dimensional printing of Ti-6Al-4V powders on titanium plates using
selective laser melting. International Journal of Precision Engineering and
Manufacturing 18(11): 1609-1618. doi:10.1007/s12541-017-0190-5
Majumdar,
T., Eisenstein, N., Frith, J.E., Cox, S.C. & Birbilis, N. 2018. Additive
manufacturing of titanium alloys for orthopedic applications: A materials
science viewpoint. Advanced Engineering Materials 20(9): 1800172.
doi:10.1002/adem.201800172
Qian,
M. 2015. Metal powder for additive manufacturing. Jom 67(3): 536-537.
doi:10.1007/s11837-015-1321-z
Ramli,
M.I., Sulong, A.B., Muhamad, N., Muchtar, A. & Zakaria, M.Y. 2018.
Pengoptimuman parameter pengacuan suntikan terhadap ketumpatan jasad anum untuk
komposit aloi titanium-wolastonit. Sains Malaysiana 47(11): 2869-2875.
doi:10.17576/jsm-2018-4711-30
Renishaw.
2019. Brochure: RenAM 500Q/S additive manufacturing system.
https://www.renishaw.com/en/renam-500s--44920.
Renishaw.
2017. Data sheet: Ti6Al4V ELI-0406 powder for additive manufacturing: AMPD AM
3D printing metal powder AM250.
https://resources.renishaw.com/en/details/data-sheet-ti6al4v-eli-0406-powder-for-additive-manufacturing--94700.
SLM
Solutions. 2018. 3D Metals: Discover the variety of metal powders.
SLM
Solutions Group AG. 2001. Commercial material data sheet|Ti-Alloy Ti6Al4V ELI
(Grade 23) (Grade 23): 7072.
https://www.slm-solutions.com/products-and-solutions/powders/.
SLM
Solutions Group AG. 2021. SLM®280 2.0 Brochure. SLM-Solutions.com.
https://www.slm-solutions.com/products-and-solutions/machines/slm-280/.
Accessed on 12 April 2020.
Song,
B., Dong, S., Zhang, B., Liao, H. & Coddet, C. 2012. Effects of processing
parameters on microstructure and mechanical property of selective laser melted
Ti6Al4V. Materials & Design 35: 120-125.
doi:10.1016/j.matdes.2011.09.051
Sun,
P., Fang, Z.Z., Xia, Y., Zhang, Y. & Zhou, C. 2016. A novel method for
production of spherical Ti-6Al-4V powder for additive manufacturing. Powder
Technology 301: 331-335. doi:10.1016/j.powtec.2016.06.022
Sutton,
A.T., Kriewall, C.S., Leu, M.C. & Newkirk, J.W. 2016. Powders for additive
manufacturing processes: Characterization techniques and effects on part
properties. In Solid Freeform
Fabrication 2016: Proceedings of the 27th Annual International Solid Freeform
Fabrication Symposium - An Additive Manufacturing Conference, SFF 2016. University of Texas. pp. 1004-1030.
Wysocki,
B., Maj, P., Sitek, R., Buhagiar, J., Kurzydłowski, K.J. &
Świeszkowski, W. 2017. Laser and electron beam additive manufacturing
methods of fabricating titanium bone implants. Applied Sciences 7(7):
657. doi:10.3390/app7070657
Xie,
B., Fan, Y. & Zhao, S. 2021. Characterization of Ti6Al4V powders produced
by different methods for selective laser melting. Materials Research Express 8(7): 076510. doi:https://doi.org/10.1088/2053-1591/ac10d1
Yang,
J., Yu, H., Yin, J., Gao, M., Wang, Z. & Zeng, X. 2016. Formation and
control of martensite in Ti-6Al-4V alloy produced by selective laser melting. Materials
& Design 108: 308-318. doi:10.1016/j.matdes.2016.06.117
Zhao,
X., Li, S., Zhang, M., Liu, Y., Sercombe, T.B., Wang, S., Hao, Y., Yang, R.
& Murr, L.E. 2016. Comparison of the microstructures and mechanical
properties of Ti-6Al-4V fabricated by selective laser melting and electron beam
melting. Materials & Design 95: 21-31.
doi:10.1016/j.matdes.2015.12.135
Zuback,
J.S. & DebRoy, T. 2018. The hardness of additively manufactured alloys. Materials 11(11): 2070. doi:10.3390/ma11112070
*Corresponding author; email:
farhana.foudzi@ukm.edu.my
|