Sains Malaysiana 51(6)(2022): 1885-1894

http://doi.org/10.17576/jsm-2022-5106-23

 

Pencirian dan Perbandingan Serbuk Aloi Titanium (Ti6Al4V) yang Digunakan dalam Peleburan Laser Selektif (SLM)

(Characterisation and Comparison of Titanium Alloy (Ti6Al4V) Powders Used in Selective Laser Melting (SLM))

 

FARHANA MOHD FOUDZI*, FATHIN ILIANA JAMHARI & MINHALINA AHMAD BUHAIRI

 

Jabatan Kejuruteraan Mekanikal dan Pembuatan, Fakulti Kejuruteraan dan Alam Bina, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia

 

Received: 28 August 2021/ Accepted: 30 October 2021

 

Abstrak

Ciri serbuk aloi titanium (Ti6Al4V) yang digunakan dalam pembuatan aditif logam (MAM) amat penting dalam menjamin mutu produk yang dihasilkan. Salah satu teknologi dalam MAM adalah Peleburan Laser Selektif (SLM). Mesin pencetakan SLM telah dibangunkan oleh beberapa syarikat seperti SLM Solutions Group AG dan Renishaw PLC. Bagi menjamin kualiti produk mesin masing-masing, setiap syarikat menghasilkan serbuk logam tersendiri. Hal ini membataskan potensi penggunaan SLM kerana pengguna tidak boleh menggunakan serbuk logam mereka sendiri. Maka, kajian ini bertujuan untuk mengkaji perbezaan antara serbuk Ti6Al4V yang dihasilkan oleh SLM Solutions dan Renishaw, dan juga menentukan ciri serbuk Ti6Al4V yang sesuai untuk kaedah SLM. Pencirian sampel serbuk telah dilakukan bagi mengkaji bentuk dan saiz zarah, rencaman kimia dan struktur kristalografi. Sampel serbuk Ti6Al4V daripada SLM Solutions dan Renishaw masing-masing ditandakan sebagai S1 dan S2. Analisis SEM menunjukkan sampel S2 mempunyai bentuk sfera yang lebih sempurna berbanding sampel S1. Analisis rencaman kimia menunjukkan kedua-dua sampel mempunyai taburan unsur kimia yang serupa dengan nilai kajian lampau. Selain itu, analisis taburan saiz zarah menunjukkan saiz zarah S1 dan S2 adalah kurang daripada 45 µm dengan nilai tersebut masih dalam lingkungan yang boleh diterima dalam MAM iaitu 10 hingga 60 µm. Analisis XRD menunjukkan kedua-dua sampel mempunyai puncak keamatan dan struktur kristal berbentuk heksagon yang serupa. Diharapkan makalah ini dapat dijadikan panduan bagi mereka yang ingin menghasilkan sendiri serbuk Ti6Al4V bagi penggunaan proses fabrikasi SLM.

 

Kata kunci: Peleburan laser selektif (SLM); pencirian serbuk logam; Ti6Al4V

 

Abstract

Properties of titanium alloy (Ti6Al4V) powder used in Metal Additive Manufacturing (MAM) is critical to finished product's performance. MAM technologies include Selective Laser Melting (SLM) method. Several companies in the industry, including SLM Solutions Group AG and Renishaw PLC, have developed the SLM printing machine. To guarantee the quality of their goods, the companies created their own unique Ti6Al4V powders. Due to end-users not permitted to utilise their own powders, the potential for SLM usage is limited. Thus, the aim of this study was to compare the Ti6Al4V powders made by SLM Solutions and Renishaw, and determine the suitable range of Ti6Al4V powder properties needed for SLM method. Powder samples were characterised to determine their particle shape and size, chemical composition, and crystal structure. The Ti6Al4V powders from SLM Solutions and Renishaw are denoted as S1 and S2, respectively. SEM analysis showed that S2 sample contains nearly spherical particles compared to S1. Analysis of chemical composition showed that both samples correspond to previously reported values. Moreover, the particle size distributions of both samples are within the permissible range of MAM which is 10 to 60 µm. XRD analysis proved that both samples have the same Bragg’s peaks and hexagonal crystal str ucture. It is hoped that this article may help those who aim to manufacture their own Ti6Al4V powders for SLM fabrication method.

 

Keywords: Powder characterisation; selective laser melting (SLM); Ti6Al4V

 

REFERENCES

Dawes, J., Bowerman, R. & Trepleton, R. 2015. Introduction to the additive manufacturing powder metallurgy supply chain. Johnson Matthey Technology Review 59(3): 243-256. doi:10.1595/205651315X688686

DebRoy, T., Wei, H.L., Zuback, J.S., Mukherjee, T., Elmer, J.W., Milewski, J.O., Beese, A.M., Wilson-Heid, A.D., De, A. & Zhang, W. 2018. Additive manufacturing of metallic components - Process, structure and properties. Progress in Materials Science 92: 112-224. doi:10.1016/j.pmatsci.2017.10.001

Foudzi, F.M., Buhairi, M.A., Jamhari, F.I., Sulong, A.B., Harun, W.S.W. & Al-Furjan, M.S. H. 2021. Effect of energy density on properties of additive manufactured Ti6Al4V via SLM. Powder Met 21 hlm. 434-449.

Foudzi, F.M., Buhairi, M.A. & Jamhari, F.I. 2020. Influence of processing parameters of selective laser melting (SLM) on additive manufactured titanium alloy (Ti6Al4V). In Proceedings of Mechanical Engineering Research Day. pp. 55-57.

Haferkamp, L., Haudenschild, L., Spierings, A., Wegener, K., Riener, K., Ziegelmeier, S. & Leichtfried, G.J. 2021. The influence of particle shape, powder flowability, and powder layer density on part density in laser powder bed fusion. Metals 11(3): 418. doi:10.3390/met11030418

Herzog, D., Seyda, V., Wycisk, E. & Emmelmann, C. 2016. Additive manufacturing of metals. Acta Materialia 117: 371-392. doi:10.1016/j.actamat.2016.07.019

Konečná, R., Medvecká, D. & Nicoletto, G. 2019. Structure, texture and tensile properties of Ti6Al4V produced by selective laser melting. Production Engineering Archives 25(25): 60-65. doi:10.30657/pea.2019.25.12

Kuo, C., Su, C. & Chiang, A. 2017. Parametric optimization of density and dimensions in three-dimensional printing of Ti-6Al-4V powders on titanium plates using selective laser melting. International Journal of Precision Engineering and Manufacturing 18(11): 1609-1618. doi:10.1007/s12541-017-0190-5

Majumdar, T., Eisenstein, N., Frith, J.E., Cox, S.C. & Birbilis, N. 2018. Additive manufacturing of titanium alloys for orthopedic applications: A materials science viewpoint. Advanced Engineering Materials 20(9): 1800172. doi:10.1002/adem.201800172

Qian, M. 2015. Metal powder for additive manufacturing. Jom 67(3): 536-537. doi:10.1007/s11837-015-1321-z

Ramli, M.I., Sulong, A.B., Muhamad, N., Muchtar, A. & Zakaria, M.Y. 2018. Pengoptimuman parameter pengacuan suntikan terhadap ketumpatan jasad anum untuk komposit aloi titanium-wolastonit. Sains Malaysiana 47(11): 2869-2875. doi:10.17576/jsm-2018-4711-30

Renishaw. 2019. Brochure: RenAM 500Q/S additive manufacturing system. https://www.renishaw.com/en/renam-500s--44920.

Renishaw. 2017. Data sheet: Ti6Al4V ELI-0406 powder for additive manufacturing: AMPD AM 3D printing metal powder AM250. https://resources.renishaw.com/en/details/data-sheet-ti6al4v-eli-0406-powder-for-additive-manufacturing--94700.

SLM Solutions. 2018. 3D Metals: Discover the variety of metal powders.

SLM Solutions Group AG. 2001. Commercial material data sheet|Ti-Alloy Ti6Al4V ELI (Grade 23) (Grade 23): 7072. https://www.slm-solutions.com/products-and-solutions/powders/.

SLM Solutions Group AG. 2021. SLM®280 2.0 Brochure. SLM-Solutions.com. https://www.slm-solutions.com/products-and-solutions/machines/slm-280/. Accessed on 12 April 2020.

Song, B., Dong, S., Zhang, B., Liao, H. & Coddet, C. 2012. Effects of processing parameters on microstructure and mechanical property of selective laser melted Ti6Al4V. Materials & Design 35: 120-125. doi:10.1016/j.matdes.2011.09.051

Sun, P., Fang, Z.Z., Xia, Y., Zhang, Y. & Zhou, C. 2016. A novel method for production of spherical Ti-6Al-4V powder for additive manufacturing. Powder Technology 301: 331-335. doi:10.1016/j.powtec.2016.06.022

Sutton, A.T., Kriewall, C.S., Leu, M.C. & Newkirk, J.W. 2016. Powders for additive manufacturing processes: Characterization techniques and effects on part properties. In  Solid Freeform Fabrication 2016: Proceedings of the 27th Annual International Solid Freeform Fabrication Symposium - An Additive Manufacturing Conference, SFF 2016. University of Texas. pp. 1004-1030.

Wysocki, B., Maj, P., Sitek, R., Buhagiar, J., Kurzydłowski, K.J. & Świeszkowski, W. 2017. Laser and electron beam additive manufacturing methods of fabricating titanium bone implants. Applied Sciences 7(7): 657. doi:10.3390/app7070657

Xie, B., Fan, Y. & Zhao, S. 2021. Characterization of Ti6Al4V powders produced by different methods for selective laser melting. Materials Research Express 8(7): 076510. doi:https://doi.org/10.1088/2053-1591/ac10d1

Yang, J., Yu, H., Yin, J., Gao, M., Wang, Z. & Zeng, X. 2016. Formation and control of martensite in Ti-6Al-4V alloy produced by selective laser melting. Materials & Design 108: 308-318. doi:10.1016/j.matdes.2016.06.117

Zhao, X., Li, S., Zhang, M., Liu, Y., Sercombe, T.B., Wang, S., Hao, Y., Yang, R. & Murr, L.E. 2016. Comparison of the microstructures and mechanical properties of Ti-6Al-4V fabricated by selective laser melting and electron beam melting. Materials & Design 95: 21-31. doi:10.1016/j.matdes.2015.12.135

Zuback, J.S. & DebRoy, T. 2018. The hardness of additively manufactured alloys. Materials 11(11): 2070. doi:10.3390/ma11112070

 

*Corresponding author; email: farhana.foudzi@ukm.edu.my

 

 

previous