Sains Malaysiana 51(6)(2022): 1905-1914

http://doi.org/10.17576/jsm-2022-5106-25

 

Approximate-Analytic Solution of Hyperchaotic Finance System by Multistage Approach

(Penyelesaian Analitik Anggaran Sistem Kewangan Hiperkalut Menggunakan Pendekatan Multitahap)

 

Y.M. RANGKUTI1,*, A.K. ALOMARI2, N.R. ANAKIRA3 & A.F. JAMEEL4

 

1Mathematics Department, Faculty of Mathematics and Natural Science, Universitas Negeri Medan, 20221, Medan, North Sumatera, Indonesia

2Mathematics Department, Faculty of Science, Yarmouk University, 22110, Irbid, Jordan

3Department of Mathematics, Faculty of Science and Technology, Irbid National University, 2600 Irbid, Jordan

4School of Quantitative Sciences, Faculty of Science, Universiti Utara Malaysia (UUM), 06010 Sintok, Kedah Darul Aman, Malaysia

 

Received: 3 July 2021/Accepted: 30 November 2021

 

Abstract

This paper devotes to constructing an approximate analytic solution for the hyperchaotic finance model. The model describes the time variation of the interest rate, the investment demand, the price exponent, and the average profit margin. The multistage homotopy analysis method (MHAM) and multistage variational iteration method (MVIM) are utilized to generate the analytical solutions. The solutions are presented in terms of continuous piecewise functions without interpolation. These procedures prove their applicability for this kind of model due to rapidly convergent series solutions with easily computable terms, iterates, and efficiently obtained by applying it over multiple time intervals. We also provide the convergences theorem of the MHAM. Numerical comparisons are displayed with the results obtained by MHAM, MVIM, and the fourth-order Runge-Kutta method to demonstrate the validity and effectivity of this procedure.

 

Keywords: Finance system; hyperchaotic system; multistage homotopy analysis method; multistage variational iteration method

 

Abstrak

Kertas ini membincangkan pembinaan penyelesaian analitik anggaran bagi model kewangan hiperkalut. Model ini melibatkan variasi masa kadar faedah, permintaan pelaburan, eksponen harga dan margin untung purata. Kaedah analisis homotopi multitahap (KAHM) dan kaedah lelaran variasi multitahap (KLVM) dibina dan digunakan untuk mendapatkan penyelesaian yang berbentuk fungsi cebisan selanjar tanpa interpolasi. Kemampuan kedua-dua kaedah ini terbukti berhasil untuk model seperti ini kerana penyelesaian sirinya didapati cepat menumpu dan sebutan dalam penyelesaiannya mudah dihitung di dalam lelaran. Ketepatan penyelesaian dapat diperoleh melalui penerapannya dalam beberapa selang masa berganda. Kertas ini turut memperuntukkan teorem penumpuan KAHM. Perbandingan berangka bagi keputusan yang diperoleh daripada KAHM, KLVM dan kaedah Runge-Kutta peringkat keempat dipaparkan untuk menunjukkan kesahihan dan keberkesanan kedua-dua kaedah baharu ini.

 

Kata kunci: Kaedah analisis homotopi multitahap (KAHM); kaedah lelaran variasi multitahap (KLVM); sistem berkekalutan hiper; sistem kewangan

 

REFERENCES

Alcin, M. 2020. The Runge Kutta-4 based 4D hyperchaotic system design for secure communication applications. CHAOS Theory and Applications 2(1): 23-30.

Aljahdaly, N.H. & El-Tantawy, S.A. 2021. On the multistage differential transformation method for analyzing damping duffing oscillator and its applications to plasma physics. Mathematics 9(4): 432.

Alomari, A.K., Noorani, M.S.M.  & Nazar, R. 2009. Adaptation of homotopy analysis method for the numeric - Analytic solution of Chen system. Communications in Nonlinear Science and Numerical Simulation 14(5): 2336-2346.

Cao, L. 2018. A four-dimensional hyperchaotic finance system and its control problems. Journal of Control Science and Engineering 2018: 4976380.

Chen, H., Yu, L., Wang, Y. & Guo, M. 2021. Synchronization of a hyperchaotic finance system. Complexity 2021: 6618435.

Dinesha, D.L. & Gurrala, G. 2018. Application of multi-stage homotopy analysis method for power system dynamic simulations. IEEE Transactions on Power Systems 34(3): 2251-2260.

Emiroglu, S., Adıyaman, Y., Gümüs, T.E., Uyaroglu, Y. & Yalçın, M.A. 2021. A new hyperchaotic system from T chaotic system: Dynamical analysis, circuit implementation, control and synchronization. Circuit World 48(2): 265-277.

Grandmont, J.M. 1985. On endogenous competitive business cycles. Econometrica: Journal of the Econometric Society 53(5): 995-1045.

Goh, S.M. Noorani, M.S.N. Hashim, 1. & Al-Sawalha, M.M. 2009. Variational iteration method as a reliable treatment for the hyperchaotic Rössler system. International Journal of Nonlinear Sciences and Numerical Simulation 10(3): 363-371.

He, S., Sun, K. & Wang, H. 2019. Dynamics and synchronization of conformable fractional-order hyperchaotic systems using the Homotopy analysis method. Communications in Nonlinear Science and Numerical Simulation 73: 146-164.

Inokuti, M., Sekine, H. & Mura, T. 1978. General use of the Lagrange ultiplier in nonlinear, mathematical physics. Variational Method in the Mechanics of Solids 33(5): 156-162.

Jahanshahi, H., Yousefpour, A., Wei, Z., Alcaraz, R. & Bekiros, S. 2019. A financial hyperchaotic system with coexisting attractors: Dynamic investigation, entropy analysis, control and synchronization. Chaos, Solitons & Fractals 126(C): 66-77.

Kocamaz, U.E., Göksu, A., Uyaroğlu, Y. & Taşkın, H. 2018. Controlling hyperchaotic finance system with combining passive and feedback controllers. Information Technology Control 47(1): 45-55.

Ma, J.H. & Chen, Y.S. 2001. Study for the bifurcation topological structure and the global complicated character of a kind of nonlinear finance system (I). Applied Mathematics and Mechanics 22(11): 1240-1251.

Prabowo, P.S. & Mungkasi, S. 2021. A multistage successive approximation method for Riccati differential equations. Bulletin of Electrical Engineering and Informatics 10(3): 1589-1597.

Rangkuti, Y.M. & Alomari, A.K. 2021. Analytical solution of hyperchaotic Zhou equations by multistage homotopy analysis method. International Journal of Applied and Computational Mathematics 7: 1-13.

Rossler, O.E. 1979. An equation for hyperchaos. Physics Letters A 71: 155-157.

Shah, N.A., Ahmad, I., Bazighifan, O., Abouelregal, A.E. & Ahmad, H. 2020. Multistage optimal homotopy asymptotic method for the nonlinear riccati ordinary differential equation in nonlinear physics. Applied Mathematics & Information Science 14(6): 1-7.

Wu, W. & Chen, Z. 2010. Hopf bifurcation and intermittent transition to hyperchaos in a novel strong four-dimensional hyperchaotic system. Nonlinear Dynamics 60(4): 615-630.

Xu, E., Ma, K. & Chen, Y. 2020. H  control for a hyperchaotic finance system with external disturbance based on the quadratic system theory. Systems Science & Control Engineering 9(sup1): 41-49.

Yu, H., Cai, G. & Li, Y. 2012 Dynamic analysis and control of a new hyperchaotic finance system. Nonlinear Dynamics 67(3): 2171-2182.

 

*Corresponding author; email: yulitamolliq@unimed.ac.id

 

 

 

previous