Sains Malaysiana 51(6)(2022):
1905-1914
http://doi.org/10.17576/jsm-2022-5106-25
Approximate-Analytic
Solution of Hyperchaotic Finance System by Multistage Approach
(Penyelesaian Analitik Anggaran Sistem Kewangan Hiperkalut
Menggunakan Pendekatan Multitahap)
Y.M. RANGKUTI1,*,
A.K. ALOMARI2, N.R.
ANAKIRA3 &
A.F. JAMEEL4
1Mathematics
Department, Faculty
of Mathematics and Natural Science, Universitas Negeri
Medan, 20221, Medan, North Sumatera, Indonesia
2Mathematics
Department, Faculty of Science, Yarmouk
University, 22110,
Irbid, Jordan
3Department of
Mathematics, Faculty
of Science and Technology, Irbid
National University, 2600 Irbid, Jordan
4School of
Quantitative Sciences, Faculty of Science, Universiti Utara
Malaysia (UUM), 06010 Sintok, Kedah Darul Aman, Malaysia
Received:
3 July 2021/Accepted:
30 November 2021
Abstract
This paper devotes to constructing
an approximate analytic solution for the hyperchaotic finance model. The model
describes the time variation of the interest rate, the investment demand, the
price exponent, and the average profit margin. The multistage homotopy analysis method (MHAM) and multistage variational
iteration method (MVIM) are utilized to generate the analytical solutions. The
solutions are presented in terms of continuous piecewise functions without
interpolation. These procedures prove their applicability for this kind of
model due to rapidly convergent series solutions with easily computable terms,
iterates, and efficiently obtained by applying it over multiple time intervals.
We also provide the convergences theorem of the MHAM. Numerical comparisons are
displayed with the results obtained by MHAM, MVIM, and the fourth-order Runge-Kutta method to demonstrate the validity and effectivity of
this procedure.
Keywords: Finance system;
hyperchaotic system; multistage homotopy analysis
method; multistage variational iteration method
Abstrak
Kertas ini membincangkan pembinaan penyelesaian analitik anggaran bagi
model kewangan hiperkalut. Model ini melibatkan variasi masa kadar faedah,
permintaan pelaburan, eksponen harga dan margin untung purata. Kaedah analisis
homotopi multitahap (KAHM) dan kaedah lelaran variasi multitahap (KLVM) dibina
dan digunakan untuk mendapatkan penyelesaian yang berbentuk fungsi cebisan
selanjar tanpa interpolasi. Kemampuan kedua-dua kaedah ini terbukti berhasil
untuk model seperti ini kerana penyelesaian sirinya didapati cepat menumpu dan
sebutan dalam penyelesaiannya mudah dihitung di dalam lelaran. Ketepatan penyelesaian dapat diperoleh melalui
penerapannya dalam beberapa selang masa berganda. Kertas ini turut
memperuntukkan teorem penumpuan KAHM. Perbandingan berangka bagi keputusan yang
diperoleh daripada KAHM, KLVM dan kaedah Runge-Kutta peringkat keempat
dipaparkan untuk menunjukkan kesahihan dan keberkesanan kedua-dua kaedah baharu
ini.
Kata kunci: Kaedah analisis homotopi multitahap (KAHM); kaedah lelaran variasi
multitahap (KLVM); sistem berkekalutan hiper; sistem kewangan
REFERENCES
Alcin, M.
2020. The Runge Kutta-4 based 4D hyperchaotic system design for secure
communication applications. CHAOS Theory
and Applications 2(1): 23-30.
Aljahdaly, N.H.
& El-Tantawy, S.A. 2021. On the multistage
differential transformation method for analyzing damping duffing oscillator and
its applications to plasma physics. Mathematics 9(4): 432.
Alomari, A.K., Noorani, M.S.M. & Nazar, R. 2009. Adaptation of homotopy analysis method for the numeric - Analytic solution of Chen system. Communications
in Nonlinear Science and Numerical Simulation 14(5): 2336-2346.
Cao, L. 2018. A four-dimensional hyperchaotic finance system and its
control problems. Journal of Control
Science and Engineering 2018: 4976380.
Chen, H., Yu, L., Wang, Y. & Guo, M. 2021.
Synchronization of a hyperchaotic finance system. Complexity 2021: 6618435.
Dinesha, D.L. & Gurrala, G. 2018. Application of
multi-stage homotopy analysis method for power system
dynamic simulations. IEEE Transactions on
Power Systems 34(3): 2251-2260.
Emiroglu, S., Adıyaman, Y., Gümüs,
T.E., Uyaroglu, Y. & Yalçın,
M.A. 2021. A new hyperchaotic system from T chaotic system: Dynamical analysis,
circuit implementation, control and synchronization. Circuit World 48(2): 265-277.
Grandmont, J.M. 1985. On endogenous competitive business cycles. Econometrica: Journal of the Econometric Society 53(5): 995-1045.
Goh, S.M. Noorani, M.S.N. Hashim, 1. & Al-Sawalha, M.M. 2009. Variational iteration method as a
reliable treatment for the hyperchaotic Rössler system. International Journal of
Nonlinear Sciences and Numerical Simulation 10(3): 363-371.
He, S., Sun, K. & Wang, H. 2019. Dynamics and
synchronization of conformable fractional-order hyperchaotic systems using the Homotopy analysis method. Communications in Nonlinear
Science and Numerical Simulation 73: 146-164.
Inokuti, M., Sekine, H. & Mura, T. 1978. General use of the Lagrange ultiplier in nonlinear, mathematical physics. Variational
Method in the Mechanics of Solids 33(5): 156-162.
Jahanshahi, H., Yousefpour, A., Wei, Z., Alcaraz, R. & Bekiros,
S. 2019. A financial hyperchaotic system with coexisting attractors: Dynamic
investigation, entropy analysis, control and synchronization. Chaos, Solitons & Fractals 126(C):
66-77.
Kocamaz, U.E., Göksu, A., Uyaroğlu,
Y. & Taşkın, H. 2018. Controlling
hyperchaotic finance system with combining passive and feedback controllers. Information Technology Control 47(1):
45-55.
Ma, J.H. & Chen, Y.S. 2001. Study for the
bifurcation topological structure and the global complicated character of a
kind of nonlinear finance system (I). Applied
Mathematics and Mechanics 22(11): 1240-1251.
Prabowo, P.S. & Mungkasi,
S. 2021. A multistage successive approximation method for Riccati differential equations. Bulletin of
Electrical Engineering and Informatics 10(3): 1589-1597.
Rangkuti, Y.M. & Alomari, A.K. 2021. Analytical solution of hyperchaotic
Zhou equations by multistage homotopy analysis
method. International Journal of Applied
and Computational Mathematics 7: 1-13.
Rossler, O.E. 1979. An equation
for hyperchaos. Physics
Letters A 71: 155-157.
Shah, N.A., Ahmad, I., Bazighifan,
O., Abouelregal, A.E. & Ahmad, H. 2020.
Multistage optimal homotopy asymptotic method for the
nonlinear riccati ordinary differential equation in
nonlinear physics. Applied Mathematics
& Information Science 14(6): 1-7.
Wu, W. & Chen, Z. 2010. Hopf bifurcation and intermittent transition to hyperchaos in a novel strong four-dimensional hyperchaotic system. Nonlinear Dynamics 60(4): 615-630.
Xu, E., Ma, K. & Chen, Y. 2020. H
control for a
hyperchaotic finance system with external disturbance based on the quadratic
system theory. Systems Science &
Control Engineering 9(sup1): 41-49.
Yu, H., Cai, G. & Li, Y. 2012 Dynamic analysis and
control of a new hyperchaotic finance system. Nonlinear Dynamics 67(3): 2171-2182.
*Corresponding author; email:
yulitamolliq@unimed.ac.id
|