Sains Malaysiana 51(6)(2022):
1927-1932
http://doi.org/10.17576/jsm-2022-5106-27
Atmospheric
Pressure Chemical Vapour Deposition Growth of Graphene for
the Synthesis of SiO2 Based
Graphene Ball
(Pertumbuhan Grafin melalui Endapan Wap Kimia Tekanan Atmosferauntuk Sintesis Bebola Grafin Berasaskan SiO2)
NURKHAIZAN ZULKEPLI1, 2, JUMRIL
YUNAS1, MOHD AMBRI MOHAMED1, MOHAMAD SHUKRI SIRAT1 & AZRUL
AZLAN HAMZAH1,*
1Institute of Microengineering and Nanoelectronics
(IMEN), Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia
2Centre of Foundation Studies, Universiti Teknologi MARA, Cawangan Selangor, Kampus Dengkil, 43800 Dengkil, Selangor Darul Ehsan, Malaysia
Received: 28 February 2022/Accepted: 12
May 2022
Abstract
Graphene is a prominent carbon nanomaterial with fascinating
characteristics such as high conductivity and very high charge carrier mobility
at low temperatures. Numerous synthesis methods for graphene have been
established. Chemical vapour deposition (CVD) is among the most successful
methods to fabricate high-quality graphene. However, metal-catalyzed growth is used in
virtually all of the CVD techniques mentioned. To remove these metal catalysts
and relocate the graphene to the necessary dielectric substrate (SiO2/Si or
quartz), complex and sophisticated post-growth methods must be used, which
limits the usage of graphene in practical electronic components. In the present work, we conducted a preliminary study to
determine the suitable methane(CH4) flowrate, which could be used to synthesise SiO2 based
graphene ball. Few-layer graphene was grown on
a large area of copper(Cu) surface using 20 sccm CH4 in atmospheric pressure CVD (APCVD). The influence of CH4 flowrate on
graphene growth has been investigated. Graphene was deposited on a metal
catalyst substrate at optimum temperatures of 1000 °C.
Keywords: Atmospheric
pressure chemical vapour deposition; graphene; graphene ball; methane flowrate
Abstrak
Grafin merupakan bahan nano karbon ulung dengan ciri-ciri menarik seperti mempunyai sifat kekonduksian ion yang tinggi dan mobiliti pembawa cas yang amat tinggi pada suhu rendah. Banyak kaedah sintesis grafin yang mantap dibuat dan telah diiktiraf. Endapan wap kimia (CVD) merupakan antara kaedah yang paling berjaya dalam menghasilkan grafin berkualiti tinggi. Walau bagaimanapun, pertumbuhan logam pemangkin telah digunakan dalam hampir semua teknik CVD. Untuk menyingkirkan pemangkin logam ini dan memindahkan grafin ke substrat dielektrik yang diperlukan (SiO2/Si atau kuarza), kaedah pascapertumbuhan yang kompleks dan canggih perlu digunakan dan hal ini telah mengehadkan penggunaan grafin dalam komponen elektronik praktikal. Dalam penyelidikan ini, kami telah menjalankan kajian awal untuk menentukan kadar aliran metana (CH4) yang sesuai, yang boleh digunakan untuk mensintesis bebola grafin berasaskan SiO2. Grafin beberapa lapisan telah ditanam di kawasan besar permukaan tembaga (Cu) menggunakan 20 sccm CH4 dalam CVD tekanan atmosfera (APCVD). Pengaruh kadar aliran CH4 pada pertumbuhan grafin telah dikaji. Grafin telah didepositkan pada substrat pemangkin logam pada suhu optimum 1000 °C.
Kata kunci: Bebola grafin; endapan wap kimia tekanan atmosfera;
grafin; kadar aliran metana
REFERENCES
Ani, M.H., Kamarudin, M.A., Ramlan, A.H., Ismail, E., Sirat,
M.S., Mohamed, M.A. & Azam, M.A. 2018. A critical review on the
contributions of chemical and physical factors toward the nucleation and growth
of large-area graphene. Journal of Materials Science 53(10): 7095-7111.
doi:10.1007/s10853-018-1994-0
Antonova, I.V. 2013. Chemical vapor
deposition growth of graphene on copper substrates: Current trends. Physics-Uspekhi 56(10): 1013-1020. doi:10.3367/ufne.0183.201310i.1115
Cao, G. 2014. Atomistic studies of
mechanical properties of graphene. Polymers 6(9): 2404-2432.
doi:10.3390/polym6092404
Childres, I., Jauregui, L.A., Park,
W., Caoa, H. & Chena, Y.P. 2013. Raman spectroscopy of graphene and related
materials. In New Developments in Photon and Materials Research, edited by Jang, J.I. New York: NOVA Science
Publishers. pp. 403-418.
Dresselhaus, M.S., Jorio, A. &
Saito, R. 2010. Characterizing graphene, graphite, and carbon nanotubes by
Raman Spectroscopy. Annual Review of Condensed Matter Physics 1(1): 89-108.
doi:10.1146/annurev-conmatphys-070909-103919
Fauzi, F.B., Ismail, E., Syed Abu
Bakar, S.N., Ismail, A.F., Mohamed, M.A., Md Din, M.F., Illias, S. & Ani,
M.H. 2020. The role of gas-phase dynamics in interfacial phenomena during
few-layer graphene growth through atmospheric pressure chemical vapour
deposition. Physical Chemistry Chemical Physics 22(6): 3481-3489.
doi:10.1039/c9cp05346h
Gajewski, K., Goniszewski, S.,
Szumska, A., Moczaɫa, M., Kunicki, P., Gallop, J., Klein, N., Hao, L.
& Gotszalk, T. 2016. Raman spectroscopy and Kelvin probe force microscopy
characteristics of the CVD suspended graphene. Diamond and Related Materials 64: 27-33. doi:10.1016/j.diamond.2016.01.008
Hamzah, A.A., Selvarajan, R.S. &
Majlis, B.Y. 2017. Graphene for biomedical applications: A review. Sains
Malaysiana 46(7): 1125-1139. doi:10.17576/jsm-2017-4607-16
Jafari, A., Ghoranneviss, M. &
Hantehzadeh, M.R. 2014. Morphology control of graphene by LPCVD. J. Fusion
Energ. doi:10.1007/s10894-014-9836-9
Jamil, N.A., Khairulazdan, N.B., Menon,
P.S., Md Zain, A.R., Hamzah, A.A. & Majlis, B.Y. 2018. Graphene-MoS
SPR-based biosensor for urea detection. International Symposium on
Electronics and Smart Devices (ISESD). hlm. 1-4.
doi:10.1109/ISESD.2018.8605491
Khalid, A., Sampe, J., Yeop, B.M.,
Mohamed, M.A., Chikuba, T., Iwasaki, T. & Mizuta, H. 2015. Towards high
performance graphene nanoribbon transistors (GNR-FETs). IEEE Regional Symposium on Micro and
Nanoelectronics (RSM). pp.
1-4.
Mishra, N., Boeckl, J., Motta, N.
& Iacopi, F. 2016. Graphene growth on silicon carbide: A review. Physica
Status Solidi (A) Applications and Materials Science 213(9): 2277-2289.
doi:10.1002/pssa.201600091
Moreno-Bárcenas, A., Perez-Robles,
J.F., Vorobiev, Y.V., Ornelas-Soto, N., Mexicano, A. & García, A.G. 2018.
Graphene synthesis using a CVD reactor and a discontinuous feed of gas
precursor at atmospheric pressure. Journal of Nanomaterials 2018:
Article ID. 3457263. doi:10.1155/2018/3457263
Nalini, S., Thomas, S., Jayaraj, M.K.
& Rajeev Kumar, K. 2018. Analysis of graphene films grown on copper foil at
845 °C by intermediate pressure chemical vapor deposition. Materials
Research Express 5(11): 115604. doi:10.1088/2053-1591/aadec4
Nguyen, V.T., Le, H.D., Nguyen, V.C.,
Ngo, T.T.T., Le, D.Q., Nguyen, X.N. & Phan, N.M. 2013. Synthesis of
multi-layer graphene films on copper tape by atmospheric pressure chemical
vapor deposition method. Advances in Natural Sciences: Nanoscience and
Nanotechnology 4(3): 035012. doi:10.1088/2043-6262/4/3/035012
Novoselov, K.S., Geim, A.K., Morozov,
S.V., Jiang, D., Zhang, Y., Dubonos, S.V., Grigorieva, V. & Firsov, A.A.
2004. Electric field effect in atomically thin carbon films. Science 306(5696): 666-669. doi:10.1126/science.1102896
Palmieri, V. & Papi, M. 2020. Can
graphene take part in the fight against COVID-19? Nano Today 33: 100883.
doi:10.1016/j.nantod.2020.100883
Reckinger, N., Felten, A., Santos, C.N.,
Hackens, B. & Colomer, J.F. 2013. The influence of residual oxidizing
impurities on the synthesis of graphene by atmospheric pressure chemical vapor
deposition. Carbon 63: 84-91. doi:10.1016/j.carbon.2013.06.042
Robinson, Z.R., Ong, E.W., Mowll,
T.R., Tyagi, P., Gaskill, D.K., Geisler, H. & Ventrice, C.A. 2013.
Influence of chemisorbed oxygen on the growth of graphene on Cu(100) by
chemical vapor deposition. Journal of Physical Chemistry C 117(45):
23919-23927. doi:10.1021/jp410142r
Sirat, M.S., Ismail, E., Ramlan,
A.H., Fauzi, F.B., Yaacob, I.I., Mohamed, M.A., Azam, M.A. & Ani, M.H.
2019. Influence of surface energy and elastic strain energy on the graphene
growth in chemical vapor deposition. Materials Today: Proceedings 7(Part
2): 776-783. doi:10.1016/j.matpr.2018.12.074
Son, I.H., Park, J.H., Park, S.,
Park, K., Han, S., Shin, J., Doo, S.G., Hwang, Y., Chang, H. & Choi, J.W. 2017.
Graphene balls for lithium rechargeable batteries with fast charging and high
volumetric energy densities. Nature Communications 8(1): 1-10.
doi:10.1038/s41467-017-01823-7
Wang, S., Hibino, H., Suzuki, S.
& Yamamoto, H. 2016. Atmospheric pressure chemical vapor deposition growth
of millimeter-scale single-crystalline graphene on the copper surface with a
native oxide layer. Chemistry of Materials 28(14): 4893-4900.
doi:10.1021/acs.chemmater.6b00252
Xu, Y., Cao, H., Xue, Y., Li, B.
& Cai, W. 2018. Liquid-phase exfoliation of graphene: An overview on
exfoliation media, techniques, and challenges. Nanomaterials 8(11).
doi:10.3390/nano8110942
Yi, M. & Shen, Z. 2015. A review
on mechanical exfoliation for the scalable production of graphene. Journal
of Materials Chemistry A 3(22): 11700-11715. doi:10.1039/c5ta00252d
Zhang, Y., Zhang, H., Li, F., Shu,
H., Chen, Z., Sui, Y., Zhang, Y., Ge, X., Yu, G., Jin, Z. & Liu, X. 2016.
Invisible growth of microstructural defects in graphene chemical vapor
deposition on copper foil. Carbon 96: 237-242. doi:10.1016/j.carbon.2015.09.041
Zhen, Z. & Zhu, H. 2018.
Structure and properties of graphene. Graphene hlm. 1-12. Elsevier.
doi:10.1016/B978-0-12-812651-6.00001-X
Zhu, Y., Murali, S., Cai, W., Li, X.,
Suk, J.W., Potts, J.R. & Ruoff, R.S. 2010. Graphene and graphene oxide:
Synthesis, properties, and applications. Advanced Materials 22(35):
3906-3924. doi:10.1002/adma.201001068
.
*Corresponding
author; email: azlanhamzah@ukm.edu.my
|