Sains Malaysiana 51(6)(2022): 1927-1932

http://doi.org/10.17576/jsm-2022-5106-27

 

Atmospheric Pressure Chemical Vapour Deposition Growth of Graphene for the Synthesis of SiO2 Based Graphene Ball

(Pertumbuhan Grafin melalui Endapan Wap Kimia Tekanan Atmosferauntuk Sintesis Bebola Grafin Berasaskan SiO2)

 

NURKHAIZAN ZULKEPLI1, 2, JUMRIL YUNAS1, MOHD AMBRI MOHAMED1, MOHAMAD SHUKRI SIRAT1 & AZRUL AZLAN HAMZAH1,*

 

1Institute of Microengineering and Nanoelectronics (IMEN), Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia

2Centre of Foundation Studies, Universiti Teknologi MARA, Cawangan Selangor, Kampus Dengkil, 43800 Dengkil, Selangor Darul Ehsan, Malaysia

 

Received: 28 February 2022/Accepted: 12 May 2022

 

Abstract

Graphene is a prominent carbon nanomaterial with fascinating characteristics such as high conductivity and very high charge carrier mobility at low temperatures. Numerous synthesis methods for graphene have been established. Chemical vapour deposition (CVD) is among the most successful methods to fabricate high-quality graphene. However, metal-catalyzed growth is used in virtually all of the CVD techniques mentioned. To remove these metal catalysts and relocate the graphene to the necessary dielectric substrate (SiO2/Si or quartz), complex and sophisticated post-growth methods must be used, which limits the usage of graphene in practical electronic components. In the present work, we conducted a preliminary study to determine the suitable methane(CH4) flowrate, which could be used to synthesise SiO2 based graphene ball. Few-layer graphene was grown on a large area of copper(Cu) surface using 20 sccm CH4 in atmospheric pressure CVD (APCVD). The influence of CH4 flowrate on graphene growth has been investigated. Graphene was deposited on a metal catalyst substrate at optimum temperatures of 1000 °C.

 

Keywords: Atmospheric pressure chemical vapour deposition; graphene; graphene ball; methane flowrate

 

Abstrak

Grafin merupakan bahan nano karbon ulung dengan ciri-ciri menarik seperti mempunyai sifat kekonduksian ion yang tinggi dan mobiliti pembawa cas yang amat tinggi pada suhu rendah. Banyak kaedah sintesis grafin yang mantap dibuat dan telah diiktiraf. Endapan wap kimia (CVD) merupakan antara kaedah yang paling berjaya dalam menghasilkan grafin berkualiti tinggi. Walau bagaimanapun, pertumbuhan logam pemangkin telah digunakan dalam hampir semua teknik CVD. Untuk menyingkirkan pemangkin logam ini dan memindahkan grafin ke substrat dielektrik yang diperlukan (SiO2/Si atau kuarza), kaedah pascapertumbuhan yang kompleks dan canggih perlu digunakan dan hal ini telah mengehadkan penggunaan grafin dalam komponen elektronik praktikal. Dalam penyelidikan ini, kami telah menjalankan kajian awal untuk menentukan kadar aliran metana (CH4) yang sesuai, yang boleh digunakan untuk mensintesis bebola grafin berasaskan SiO2. Grafin beberapa lapisan telah ditanam di kawasan besar permukaan tembaga (Cu) menggunakan 20 sccm CH4 dalam CVD tekanan atmosfera (APCVD). Pengaruh kadar aliran CH4 pada pertumbuhan grafin telah dikaji. Grafin telah didepositkan pada substrat pemangkin logam pada suhu optimum 1000 °C.


Kata kunci: Bebola grafin; endapan wap kimia tekanan atmosfera
; grafin; kadar aliran metana

 

REFERENCES

Ani, M.H., Kamarudin, M.A., Ramlan, A.H., Ismail, E., Sirat, M.S., Mohamed, M.A. & Azam, M.A. 2018. A critical review on the contributions of chemical and physical factors toward the nucleation and growth of large-area graphene. Journal of Materials Science 53(10): 7095-7111. doi:10.1007/s10853-018-1994-0

Antonova, I.V. 2013. Chemical vapor deposition growth of graphene on copper substrates: Current trends. Physics-Uspekhi 56(10): 1013-1020. doi:10.3367/ufne.0183.201310i.1115

Cao, G. 2014. Atomistic studies of mechanical properties of graphene. Polymers 6(9): 2404-2432. doi:10.3390/polym6092404

Childres, I., Jauregui, L.A., Park, W., Caoa, H. & Chena, Y.P. 2013. Raman spectroscopy of graphene and related materials. In New Developments in Photon and Materials Research, edited by Jang, J.I. New York: NOVA Science Publishers. pp. 403-418.

Dresselhaus, M.S., Jorio, A. & Saito, R. 2010. Characterizing graphene, graphite, and carbon nanotubes by Raman Spectroscopy. Annual Review of Condensed Matter Physics 1(1): 89-108. doi:10.1146/annurev-conmatphys-070909-103919

Fauzi, F.B., Ismail, E., Syed Abu Bakar, S.N., Ismail, A.F., Mohamed, M.A., Md Din, M.F., Illias, S. & Ani, M.H. 2020. The role of gas-phase dynamics in interfacial phenomena during few-layer graphene growth through atmospheric pressure chemical vapour deposition. Physical Chemistry Chemical Physics 22(6): 3481-3489. doi:10.1039/c9cp05346h

Gajewski, K., Goniszewski, S., Szumska, A., Moczaɫa, M., Kunicki, P., Gallop, J., Klein, N., Hao, L. & Gotszalk, T. 2016. Raman spectroscopy and Kelvin probe force microscopy characteristics of the CVD suspended graphene. Diamond and Related Materials 64: 27-33. doi:10.1016/j.diamond.2016.01.008

Hamzah, A.A., Selvarajan, R.S. & Majlis, B.Y. 2017. Graphene for biomedical applications: A review. Sains Malaysiana 46(7): 1125-1139. doi:10.17576/jsm-2017-4607-16

Jafari, A., Ghoranneviss, M. & Hantehzadeh, M.R. 2014. Morphology control of graphene by LPCVD. J. Fusion Energ. doi:10.1007/s10894-014-9836-9

Jamil, N.A., Khairulazdan, N.B., Menon, P.S., Md Zain, A.R., Hamzah, A.A. & Majlis, B.Y. 2018. Graphene-MoS SPR-based biosensor for urea detection. International Symposium on Electronics and Smart Devices (ISESD). hlm. 1-4. doi:10.1109/ISESD.2018.8605491

Khalid, A., Sampe, J., Yeop, B.M., Mohamed, M.A., Chikuba, T., Iwasaki, T. & Mizuta, H. 2015. Towards high performance graphene nanoribbon transistors (GNR-FETs). IEEE Regional Symposium on Micro and Nanoelectronics (RSM). pp. 1-4.

Mishra, N., Boeckl, J., Motta, N. & Iacopi, F. 2016. Graphene growth on silicon carbide: A review. Physica Status Solidi (A) Applications and Materials Science 213(9): 2277-2289. doi:10.1002/pssa.201600091

Moreno-Bárcenas, A., Perez-Robles, J.F., Vorobiev, Y.V., Ornelas-Soto, N., Mexicano, A. & García, A.G. 2018. Graphene synthesis using a CVD reactor and a discontinuous feed of gas precursor at atmospheric pressure. Journal of Nanomaterials 2018: Article ID. 3457263. doi:10.1155/2018/3457263

Nalini, S., Thomas, S., Jayaraj, M.K. & Rajeev Kumar, K. 2018. Analysis of graphene films grown on copper foil at 845 °C by intermediate pressure chemical vapor deposition. Materials Research Express 5(11): 115604. doi:10.1088/2053-1591/aadec4

Nguyen, V.T., Le, H.D., Nguyen, V.C., Ngo, T.T.T., Le, D.Q., Nguyen, X.N. & Phan, N.M. 2013. Synthesis of multi-layer graphene films on copper tape by atmospheric pressure chemical vapor deposition method. Advances in Natural Sciences: Nanoscience and Nanotechnology 4(3): 035012. doi:10.1088/2043-6262/4/3/035012

Novoselov, K.S., Geim, A.K., Morozov, S.V., Jiang, D., Zhang, Y., Dubonos, S.V., Grigorieva, V. & Firsov, A.A. 2004. Electric field effect in atomically thin carbon films. Science 306(5696): 666-669. doi:10.1126/science.1102896

Palmieri, V. & Papi, M. 2020. Can graphene take part in the fight against COVID-19? Nano Today 33: 100883. doi:10.1016/j.nantod.2020.100883

Reckinger, N., Felten, A., Santos, C.N., Hackens, B. & Colomer, J.F. 2013. The influence of residual oxidizing impurities on the synthesis of graphene by atmospheric pressure chemical vapor deposition. Carbon 63: 84-91. doi:10.1016/j.carbon.2013.06.042

Robinson, Z.R., Ong, E.W., Mowll, T.R., Tyagi, P., Gaskill, D.K., Geisler, H. & Ventrice, C.A. 2013. Influence of chemisorbed oxygen on the growth of graphene on Cu(100) by chemical vapor deposition. Journal of Physical Chemistry C 117(45): 23919-23927. doi:10.1021/jp410142r

Sirat, M.S., Ismail, E., Ramlan, A.H., Fauzi, F.B., Yaacob, I.I., Mohamed, M.A., Azam, M.A. & Ani, M.H. 2019. Influence of surface energy and elastic strain energy on the graphene growth in chemical vapor deposition. Materials Today: Proceedings 7(Part 2): 776-783. doi:10.1016/j.matpr.2018.12.074

Son, I.H., Park, J.H., Park, S., Park, K., Han, S., Shin, J., Doo, S.G., Hwang, Y., Chang, H. & Choi, J.W. 2017. Graphene balls for lithium rechargeable batteries with fast charging and high volumetric energy densities. Nature Communications 8(1): 1-10. doi:10.1038/s41467-017-01823-7

Wang, S., Hibino, H., Suzuki, S. & Yamamoto, H. 2016. Atmospheric pressure chemical vapor deposition growth of millimeter-scale single-crystalline graphene on the copper surface with a native oxide layer. Chemistry of Materials 28(14): 4893-4900. doi:10.1021/acs.chemmater.6b00252

Xu, Y., Cao, H., Xue, Y., Li, B. & Cai, W. 2018. Liquid-phase exfoliation of graphene: An overview on exfoliation media, techniques, and challenges. Nanomaterials 8(11). doi:10.3390/nano8110942

Yi, M. & Shen, Z. 2015. A review on mechanical exfoliation for the scalable production of graphene. Journal of Materials Chemistry A 3(22): 11700-11715. doi:10.1039/c5ta00252d

Zhang, Y., Zhang, H., Li, F., Shu, H., Chen, Z., Sui, Y., Zhang, Y., Ge, X., Yu, G., Jin, Z. & Liu, X. 2016. Invisible growth of microstructural defects in graphene chemical vapor deposition on copper foil. Carbon 96: 237-242. doi:10.1016/j.carbon.2015.09.041

Zhen, Z. & Zhu, H. 2018. Structure and properties of graphene. Graphene hlm. 1-12. Elsevier. doi:10.1016/B978-0-12-812651-6.00001-X

Zhu, Y., Murali, S., Cai, W., Li, X., Suk, J.W., Potts, J.R. & Ruoff, R.S. 2010. Graphene and graphene oxide: Synthesis, properties, and applications. Advanced Materials 22(35): 3906-3924. doi:10.1002/adma.201001068 .

 

*Corresponding author; email: azlanhamzah@ukm.edu.my

 

 

 

previous