Sains Malaysiana 51(6)(2022):
1933-1944
http://doi.org/10.17576/jsm-2022-5106-28
Statistical Optimization of Zinc
Oxide Nanorod Synthesis for Photocatalytic
Degradation of Methylene Blue
(Pengoptimuman Statistik Sintesis Nanorod
Zink Oksida untuk Degradasi Fotopemangkinan Metilena Biru)
AINI
AYUNNI MOHD RAUB, JUMRIL YUNAS*, MOHD AMBRI MOHAMED, JAMAL KAZMI,
JAENUDIN RIDWAN & AZRUL AZLAN HAMZAH
Institute of
Microengineering and Nanoelectronics (IMEN), Universiti Kebangsaan Malaysia, 43600 UKM Bangi,
Selangor Darul Ehsan, Malaysia
Received: 28 February 2022/Accepted: 12
May 2022
Abstract
In this work, synthesis process
parameters of Zinc Oxide nanorods (ZnO NRs)
photocatalyst is optimized using Taguchi Method to obtain the highest degradation
rate of Methylene Blue dye, MB. The Taguchi L27 (38) orthogonal
array technique was used to determine the optimum conditions for the synthesis
of the nanostructured photocatalyst. Eight important synthesis process
parameters were chosen in the analysis while the effects of the parameters were
studied using signal-to-noise (S/N) ratio analysis using minitab-16. The ZnO NRs photocatalyst was synthesized via solution process
route based on the parameters obtained from the layout of the orthogonal
arrays. The optimized synthesized nanorods was then characterized using field
emission scanning electron microscope (FESEM), X-ray diffraction (XRD),
photoluminescence (PL), ultraviolet-visible near-infrared (UV-VIS-NIR), and
Raman spectroscopies while the photodegradation of MB was determined by UV-VIS
spectrum analysis under ultraviolet light irradiation. The results show that ZnO NRs with hexagonal wurtzite structure and bandgap
energy of 3.25 eV have been obtained. The Taguchi analysis based on simulated
experimental runs predicted the highest MB degradation percentage of 17.12%
that can be achieved under optimum process conditions. Meanwhile, experimental
photocatalytic degradation of MB using ZnO NRs synthesized
under the same optimum condition achieved a degradation percentage of 17.27%,
which deviates only 0.88% from the predicted value. This analysis could give an
approach to optimize the synthesis process to ensure the good performance of nano-photocatalyst for the photodegradation of organic
contaminations in industrial wastewater in a short time and cost-effective process.
Keywords: Hydrothermal; MB degradation;
synthesis optimization; Taguchi; ZnO NRs
photocatalyst
Abstrak
Dalam kertas
ini, parameter proses sintesis bagi fotomangkin nanorod Zink Oksida (ZnO NRs)
dioptimumkan menggunakan Kaedah Taguchi untuk mendapatkan kadar degradasi
tertinggi untuk pewarna metilena biru, MB. Teknik tatasusunan ortogon Taguchi
L27 (38) digunakan untuk menentukan keadaan optimum untuk sintesis
fotomangkin berstruktur nano. Lapan parameter proses sintesis penting telah
dipilih dalam analisis manakala kesan parameter dikaji menggunakan analisis
nisbah isyarat-ke-bunyi (S/N) menggunakan minitab-16. Fotomangkin ZnO NRs telah
disintesis melalui laluan proses penyelesaian berdasarkan parameter yang
diperoleh daripada susun atur tatasusunan ortogon. Mikroskop elektron
pengimbasan pelepasan medan (FESEM), pembelauan sinar-X (XRD), fotoluminesen
(PL), inframerah-dekat sinar boleh nampak ultralembayung (UV-VIS-NIR) dan spektroskopi
Raman manakala fotodegradasi MB ditentukan oleh analisis spektrum UV-VIS di
bawah penyinaran cahaya ultralembayung. Keputusan menunjukkan bahawa ZnO NRs
dengan struktur wurtzite heksagon dan tenaga celah jalur sebanyak 3.25 eV telah
diperoleh. Analisis Taguchi berdasarkan larian uji kaji simulasi meramalkan
peratusan degradasi MB tertinggi sebanyak 17.12% boleh dicapai di bawah keadaan
proses optimum. Sementara itu, degradasi fotokatalitik uji kaji MB menggunakan
ZnO NRs yang disintesis di bawah keadaan optimum yang sama mencapai peratusan
degradasi sebanyak 17.27%, yang menyimpang hanya 0.88% daripada nilai yang
diramalkan. Analisis ini boleh memberi pendekatan dalam mengoptimumkan proses
sintesis untuk memastikan prestasi nano-fotomangkin yang baik untuk
fotodegradasi pencemaran organik dalam air sisa industri dalam masa yang
singkat dan kos efektif.
Kata kunci: Degradasi MB;
fotomangkin ZnO NRs; hidroterma; pengoptimuman sintesis; Taguchi
REFERENCES
Aini Ayunni Mohd Raub, Jumril
Yunas, Mohd Ambri Mohamed, Jamal Kazmi & Jaenudin Ridwan. 2021. Structural
and optical properties investigation of graphene oxide coated ZnO nanorods for
enhanced photocatalytic effect. Proceedings
of the 13th 2021 IEEE Regional Symposium on Micro and Nanoelectronics (RSM).
Al-Kdasi,
A., Idris, A., Saed, K. & Guan, C.T. 2004. Treatment of textile wastewater
by advanced oxidation processes - A review. Global
Nest: Int. J. 6: 222-230.
Azzouz,
I., Ghozlane Habba, Y., Capochichi-Gnambodoe, M., Marty, F., Vial, J.,
Leprince-Wang, Y. & Bourouina, T. 2018. Zinc oxide nano-enabled
microfluidic reactor for water purification and its applicability to volatile
organic compounds. Microsystems &
Nanoengineering 4: 17093. https://doi.org/10.1038/micronano.2017.93.
Chung,
K-T., Stevens Jr., S.E. & Cerniglia, C.E. 1992. The Reduction of azo dyes
by the intestinal microflora. Critical
Reviews in Microbiology 18(3): 175-190.
https://doi.org/10.3109/10408419209114557.
Devadi,
M.A.H., Krishna, M., Narasimha Murthy, H.N. & Sathyanarayana, B.S. 2014.
Statistical optimization for photocatalytic degradation of methylene blue by
Ag-TiO2 nanoparticles. Procedia Materials
Science 5: 612-621. https://doi.org/https://doi.org/10.1016/j.mspro.2014.07.307.
Elliott,
A., Hanby, W. & Malcolm, B. 2002. The near infra-red absorption spectra of
natural and synthetic fibres. British
Journal of Applied Physics 5: 377.
https://doi.org/10.1088/0508-3443/5/11/301.
Foo,
K.L., Uda Hashim, Kashif Muhammad & Voon, C.H. 2014. Sol-gel synthesized
zinc oxide nanorods and their structural and optical investigation for
optoelectronic application. Nanoscale
Research Letters 9(1): 429. https://doi.org/10.1186/1556-276X-9-429.
Garcia,
S.P. & Semancik, S. 2007. Controlling the morphology of zinc oxide nanorods
crystallized from aqueous solutions: The effect of crystal growth
modifiers on aspect ratio. Chemistry of
Materials 19(16): 4016-4022. https://doi.org/10.1021/cm061977r.
https://doi.org/10.1021/cm061977r.
Jankovic,
A., Chaudhary, G. & Goia, F. 2021. Designing the design of experiments
(DOE) - An investigation on the influence of different factorial designs on the
characterization of complex systems. Energy
and Buildings 250: 111298. https://doi.org/10.1016/j.enbuild.2021.111298.
Kareem,
M. 2020. Effect of annealing temperature on structural, morphological and
optical properties of ZnO nanorod thin films prepared by hydrothermal method. Journal of Ovonic Research 16: 53-61.
Kazmi
Jamal, Poh Choon Ooi, Boon Tong Goh, Min Kai Lee, M.F. Mohd Razip Wee, Siti
Shafura A Karim, Syed Raza Ali Raza & Mohd Ambri Mohamed. 2020. Bi-doping
improves the magnetic properties of zinc oxide nanowires. RSC Advances 10(39): 23297-23311.
https://doi.org/10.1039/d0ra03816d.
Kazmi
Jamal, Poh Choon Ooi, Syed Raza Ali Raza, Boon Tong Goh, Siti Shafura A. Karim,
Mohd Hazrie Samat, Min Kai Lee, M.F. Mohd. Razip Wee, Mohamad Fariz Mohamad
Taib & Mohd Ambri Mohamed. 2021. Appealing stable room-temperature
ferromagnetism by well-aligned 1D Co-doped zinc oxide nanowires. Journal of Alloys and Compounds 872:
159741. https://doi.org/10.1016/j.jallcom.2021.159741.
Kestioğlu,
K., Yonar, T. & Azbar, N. 2005. Feasibility of physico-chemical treatment
and Advanced Oxidation Processes (AOPs) as a means of pretreatment of olive
mill effluent (OME). Process Biochemistry 40(7): 2409-2416.
https://doi.org/https://doi.org/10.1016/j.procbio.2004.09.015.
Kim,
Y-J., Lee, J-H. & Yi, G-C. 2009. Vertically aligned ZnO nanostructures
grown on graphene layers. Applied Physics
Letters 95(21): 213101. https://doi.org/10.1063/1.3266836.
Mangiafico,
S.S. 2018. The problem with p-values: Are results from statistical tests
meaningful?
2018 Proceedings 3rd Annual Extension
Program Updates at the Agricultural Agents’ Association of New Jersey, Inc. Annual
Meeting. p. 10.
Mohd
Fudzi, L., Zainal, Z., Lim, H.N., Chang, S.K., Holi, A.M. & Sarif Mohd Ali,
M. 2018. Effect of temperature and growth time on vertically aligned ZnO
nanorods by simplified hydrothermal technique for photoelectrochemical cells. Materials (Basel) 11(5): 704.
https://doi.org/10.3390/ma11050704.
Mohd
Raub, Aini Ayuni, Jumril Yunas, Mohd Ambri Mohamed, Badariah Bais, Azrul Azlan
Hamzah, Jaenudin Ridwan, Jamal Kazmi & Muhamad Azuddin Hassan. 2022.
Synthesis and characterization of ZnO NRs with spray coated GO for enhanced
photocatalytic activity. Ceramics
International 48(13): 18238-18245.
https://doi.org/10.1016/j.ceramint.2022.03.082.
Nagaraju,
G., Shivaraju, G.C., Banuprakash, G. & Rangappa, D. 2017. Photocatalytic
activity of ZnO nanoparticles: Synthesis via solution combustion method. Materials Today: Proceedings 4(11):
11700-11705. https://doi.org/10.1016/j.matpr.2017.09.085.
Ong,
C.B., Ng, L.Y. & Abdul Wahab Mohammad. 2018. A review of ZnO nanoparticles
as solar photocatalysts: Synthesis, mechanisms and applications. Renewable and Sustainable Energy Reviews 81: 536-551. https://doi.org/10.1016/j.rser.2017.08.020.
Pouretedal,
H.R., Fallahgar, M., Pourhasan, F.S. & Mohammad Nasiri. 2017. Taguchi
optimization of photodegradation of yellow water of trinitrotoluene production
catalyzed by nanoparticles TiO2/N under visible light. Iranian Journal of Catalysis 7(4):
317-326.
Qiu,
R., Zhang, D., Mo, Y., Song, L., Brewer, E., Huang, X. & Xiong, Y. 2008.
Photocatalytic activity of polymer-modified ZnO under visible light
irradiation. Journal of Hazardous
Materials 156(1): 80-85.
https://doi.org/https://doi.org/10.1016/j.jhazmat.2007.11.114.
Rehman,
Z.U., Heo, S.N., Cho, H.J. & Koo, B.H. 2016. Vertically aligned ZnO nanorods:
Effect of synthesis parameters. J.
Nanosci. Nanotechnol. 16(6): 6555-6559.
https://doi.org/10.1166/jnn.2016.12136.
Seyed
Mojib Zahraee, Milad Hatami, Noordin Mohd Yusof, Jafri Mohd Rohani & Farhad
Ziaei. 2013. Combined use of design of experiment and computer simulation for
resources level determination in concrete pouring process. Jurnal Teknologi 64(1): 43-49.
Shamsikasmaei,
A., Sohrabi, M., Dehaghi, S. & Ghasemi, H. 2013. Using the Taguchi
optimization method for the photodegradation of a Di-Azo dye by UV/Nd-TiO2 and
a fixed bed system. Fresenius
Environmental Bulletin 22: 3287-3292.
Solis-Pomar,
F., Jaramillo, A., Lopez-Villareal, J., Medina, C., Rojas, D., Mera, A.C.,
Meléndrez, M.F. & Pérez-Tijerina, E. 2016. Rapid synthesis and
photocatalytic activity of ZnO nanowires obtained through microwave-assisted
thermal decomposition. Ceramics
International 42(16): 18045-18052.
https://doi.org/10.1016/j.ceramint.2016.08.084.
Sun,
L., Zhao, D., Song, Z., Shan, C., Zhang, Z., Li, B. & Shen, D. 2011. Gold
nanoparticles modified ZnO nanorods with improved photocatalytic activity. Journal of Colloid and Interface Science 363(1): 175-181. https://doi.org/https://doi.org/10.1016/j.jcis.2011.07.005.
Taguchi,
G., Konishi, S. & Wu, Y. 1987. Taguchi
Methods: Orthogonal Arrays and Linear Graphs. Tools for Quality Engineering.
Dearborn, Michigan: American Supplier Institute.
Tufekci,
N., Sivri, N. & Toroz, I. 2007. Pollutants of textile industry wastewater
and assessment of its discharge limits by water quality standards. Turkish Journal of Fisheries and Aquatic
Sciences 7: 97-103.
Xia,
K. 2018. Simulation of a photocatalytic microreactor with COMSOL multiphysics.
Mechanical Engineering, University of California Riverside. Msc. Thesis
(Unpublished).
Xu,
L., Hong, M., Wang, Y., Li, M., Li, H., Nair, M.P.N. & Li, C-Z. 2016.
Tunable synthesis solid or hollow Au–Ag nanostructure, assembled with GO and
comparative study of their catalytic properties. Science Bulletin 61(19): 1525-1535.
https://doi.org/https://doi.org/10.1007/s11434-016-1165-0.
Zhang,
H., Feng, J. & Zhang, M. 2007. Preparation of ZnO nanorods through wet
chemical method. Materials Letters 61:
5202-5205. https://doi.org/10.1016/j.matlet.2007.04.030.
*Corresponding
author; email: jumrilyunas@ukm.edu.my
|