Sains Malaysiana 51(7)(2022):
2003-2012
http://doi.org/10.17576/jsm-2022-5107-05
Simulation and Analysis
of Sea-Level Change from Tide Gauge Station by using Artificial Neural Network
Models
(Simulasi dan Analisis Perubahan Aras Laut dari Stesen Tolok Air Pasang Surut dengan menggunakan Model Rangkaian Neural Buatan)
MILAD BAGHERI1, ZELINA Z IBRAHIM2,
LATIFAH ABD MANAF2, MOHD FADZIL AKHIR1 & WAN IZATUL
ASMA WAN TALAAT1,*
1Institute of Oceanography and Environment, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu Darul Iman, Malaysia
2Department of Environment, Faculty of Environmental
and Forestry, Universiti Putra Malaysia, 43400 UPM
Serdang, Selangor Darul Ehsan, Malaysia
Received: 9 October 2021/Accepted: 23 December 2021
Abstract
Sea level change is one of the most certain results of
global warming. Sea level change would increase erosion in coastal areas,
result in intrusion into water supplies, inundate coastal marshes and other
important habitats, and make the coastal property more vulnerable to erosion
and flooding. This situation coincides with the massive socio-economic
development of the coastal city areas. The coastal areas of the East Coast of Peninsular Malaysia
are vulnerable to sea-level change, flooding, and extreme erosion events. The
monthly Mean Sea Level (MSL) change was simulated by using two Artificial
Neural Network (ANN) models, Feed Forward- Neural
Network (FF-NN) and Nonlinear Autoregressive Exogenous- Neural Network
(NARX-NN) models. Both models did well in recreating sea levels and their
fluctuating patterns, according to the data. The NARX-NN model with
architecture (5-6-1) and four lag options, on the other hand, got the greatest
results. The findings of the model's mean sea level rise simulation show that Kuala
Terengganu would have a growing and upward trend of roughly 25.34 mm/year. This
paper shows that the eastern coast of Malaysia is highly vulnerable to
sea-level rise and therefore, requires sustainable adaptation policies and
plans to manage the potential impacts. It recommends that various policies,
which enable areas to be occupied for longer before the eventual retreat, could
be adapted to accommodate vulnerable settlements on the eastern coast of
Malaysia.
Keywords: Climate change; coastal
city; FF-NN; NARX-NN; tide gauge; time
series analysis
Abstrak
Perubahan paras laut adalah salah satu hasil pemanasan global yang
paling pasti. Perubahan paras laut akan meningkatkan hakisan di kawasan pantai, mengakibatkan pencerobohan ke dalam bekalan air, membanjiri paya pantai dan habitat penting lain
dan menjadikan harta pantai lebih terdedah kepada hakisan dan banjir. Keadaan ini bertepatan dengan pembangunan sosio-ekonomi yang besar di kawasan bandar pantai. Kawasan pantai di Pantai
Timur Semenanjung Malaysia terdedah kepada perubahan paras laut, banjir dan kejadian hakisan yang melampau. Perubahan Purata Aras Laut (MSL) bulanan telah disimulasikan dengan menggunakan dua model Rangkaian Neural Buatan (ANN), Rangkaian Neural
Feed Hadapan (FF-NN) dan Model Rangkaian Neural Eksogen Autoregresif Tak Linear (NARX-NN). Kedua-dua model itu berjaya mencipta semula paras laut dan corak turun naiknya, menurut data. Model NARX-NN dengan seni bina (5-6-1) dan empat pilihan ketinggalan, sebaliknya, mendapat hasil terbaik. Penemuan simulasi kenaikan paras laut purata model menunjukkan bahawa Kuala Terengganu akan mempunyai aliran meningkat dan meningkat kira-kira 25.34 mm/tahun. Kertas ini mendedahkan bahawa pantai timur Malaysia sangat terdedah kepada kenaikan paras laut dan oleh itu, memerlukan dasar dan rancangan penyesuaian yang mampan untuk mengurus kesan yang berpotensi. Ia mengesyorkan bahawa pelbagai dasar, yang membolehkan kawasan diduduki lebih lama sebelum berundur akhirnya, boleh disesuaikan untuk menampung penempatan yang terdedah di pantai timur Malaysia.
Kata kunci: Analisis siri masa; bandar pantai; FF-NN; NARX-NN; perubahan iklim; tolok air pasang surut
REFERENCES
Amerian, Y. & Voosoghi,
B. 2011. Least squares spectral analysis for detection of systematic behaviour
of digital level compensator. Journal of Geodetic Science 1(1): 35-40.
Ariffin, E.H., Sedrati, M., Akhir, M.F.,
Yaacob, R. & Husain, M.L. 2016. Open sandy beach morphology and morphodynamic as response to seasonal monsoon in Kuala
Terengganu, Malaysia. Journal of Coastal Research 75(10075): 1032-1036.
Awang, N.A. & Hamid, M.R.A. 2013. Sea level rise
adaptation measures: Sea level rise in Malaysia. Hydrolink 2(1): 47-49.
Bagheri, M., Zaiton Ibrahim, Z., Mansor, S., Manaf, L.A., Akhir, M.F., Talaat, W.I.A.W. & Pour, A.B. 2021a. Land-use
suitability assessment using Delphi and Analytical Hierarchy Process (D-AHP) hybrid
model for coastal city management: Kuala Terengganu, Peninsular Malaysia. ISPRS
International Journal of Geo-Information 10(9): 621-656.
Bagheri, M., Ibrahim, Z.Z., Akhir,
M.F., Talaat, W.I.A.W., Oryani,
B., Rezania, S., Wolf, I.D. & Pour, A.B. 2021b.
Impacts of future sea-level rise under global warming assessed from tide gauge
records: A case study of the east coast economic region of Peninsular Malaysia. Land 10(12): 1382-1406.
Bagheri, M., Zaiton Ibrahim, Z., Akhir, M.F., Talaat, W.I.A.W., Oryani, B., Rezania, S. &
Pour, A.B. 2021c. Developing a climate change vulnerability index for coastal
city sustainability, mitigation, and adaptation: A case study of Kuala
Terengganu, Malaysia. Land 10(11): 1271-1294.
Bagheri, M., Zaiton Ibrahim, Z., Mansor, S., Manaf, L.A., Akhir, M.F., Talaat, W.I.A.W. & Pour, A.B. 2021d. Land-use
suitability assessment using Delphi and Analytical Hierarchy Process (D-AHP) hybrid
model for coastal city management: Kuala Terengganu, Peninsular Malaysia. ISPRS
International Journal of Geo-Information 10(9): 621-645.
Bagheri, M., Ibrahim, Z., Bin Mansor,
S., Abd Manaf, L., Badarulzaman,
N. & Vaghefi, N. 2019. Shoreline change analysis
and erosion prediction using historical data of Kuala Terengganu, Malaysia. Environmental
Earth Sciences 78(15): 1-21.
Bagheri, M., Sulaiman, W.N.A. & Vaghefi, N. 2013. Application of geographic information
system technique and analytical hierarchy process model for land-use
suitability analysis on coastal area. Journal of coastal conservation 17(1): 1-10.
Ghamarnia, H. & Jalili, Z. 2015. Artificial
network for predicting water uptake under shallow saline ground water
conditions. Journal of Scientific Research and Reports 1(1): 359-372.
Hamzehie, M.E., Mazinani,
S., Davardoost, F., Mokhtare,
A., Najibi, H., Van der Bruggen,
B. & Darvishmanesh, S. 2014. Developing a feed
forward multilayer neural network model for prediction of CO2 solubility in blended aqueous amine solutions. Journal of Natural Gas
Science and Engineering 21(1): 19-25.
Ibrahim, N. & Wibowo, A. 2013.
Predictions of water level in Dungun River Terengganu using partial least
squares regression. International Journal of Basic Applied Sciences 12(1):
1-7.
IPCC. Climate Change 2014: Synthesis
Report. Contribution of Working Groups I, II, and III to the Fifth Assessment
Report of the Intergovernmental Panel on Climate Change. Switzerland:
Geneva.
Khamis, A. & Abdullah, S.N.S.B. 2014. Forecasting wheat
price using Backpropagation and NARX Neural Network. The International
Journal of Engineering and Science 3(11): 19-26.
Lan, Y.J., Hsu, T.W., Lin, Y.C. &
Huang, C.J. 2013. An adaptation due to climate change in southwest coast of
Taiwan. Coastal Management 41(2): 172-189.
Mashaly, A.F., Alazba,
A.A., Al-Awaadh, A.M. & Mattar,
M.A. 2015. Predictive model for assessing and optimizing solar still
performance using artificial neural network under hyper arid environment. Solar
Energy 118(1): 41-58.
Mimura,
N. 2013. Sea-level rise caused by climate change and its implications for
society. Proceedings of the Japan Academy, Series B, Physical and
Biological Sciences 89(7): 281-301.
NAHRIM. 2010a. The Study of the Impact of Climate Change on Sea Level
Rise in Malaysia (Final Report). National Hydraulic Research Institute
Malaysia p. 172.
NAHRIM. 2010b. Proceedings of the National Seminar on Coastal Morphology
(COSMO) the Muddy Coast of Malaysia (Final Report). National Hydraulic Research Institute Malaysia p. 220.
Nelson, J.G. & Serafin, R. 1996.
Environmental and resource planning and decision making in Canada: A human
ecological and a civics approach. Canada in Transition: Results of
Environmental and Human Geographical Research 1(1): 1-25.
Polo, F.A.O., Bermejo, J.F., Fernández,
J.F.G. & Márquez, A.C. 2015. Failure mode prediction and energy forecasting
of PV plants to assist dynamic maintenance tasks by ANN based models. Renewable
Energy 81(1): 227-238.
Ranković, V., Novaković,
A., Grujović, N., Divac, D. & Milivojević, N. 2014. Predicting piezometric water
level in dams via artificial neural networks. Neural Computing and
Applications 24(5): 1115-1121.
Tangang, F. 2007. Climate
Change and Global Warming: Malaysia Perspective: Malaysia Perspective and
Challenges. UKM Public Speech, Anuar Mahmud Hall,
University Kebangsaan Malaysia.
Tezel, G. & Buyukyildiz,
M. 2016. Monthly evaporation forecasting using artificial neural networks and
support vector machines. Theoretical and Applied Climatology 124(1-2):
69-80.
Wei, C.C. 2015. Comparing lazy and eager
learning models for water level forecasting in river-reservoir basins of
inundation regions. Environmental Modelling & Software 63(1):
137-155.
Xie, H., Tang, H. & Liao, Y.H. 2009. Time
series prediction based on NARX neural networks: An advanced approach. 2009 International
Conference on Machine Learning and Cybernetics. pp. 1275-1279.
Zime, S. 2014. Africa economic growth forecasting research based
on Artificial Neural Network Model: Case study of Benin. International
Journal of Engineering Research & Technology (IJERT) 3(11): 1644-1651.
*Corresponding author; email: wia@umt.edu.my
|