Sains Malaysiana 51(7)(2022):
2033-2046
http://doi.org/10.17576/jsm-2022-5107-08
Low Methylation of Matrix Metalloproteinase 1 (MMP1) is Associated with Preterm Labour in Malaysian Mothers
(Metilasi Rendah Matriks Metalloproteinase 1 (MMP1)
dikaitkan dengan Kelahiran Bayi Pramatang dalam kalangan Ibu di Malaysia)
NURUL HAYATI MOHAMAD ZAINAL1,*, NOR AZLIN
MOHAMED ISMAIL2 & NORFILZA M. MOKHTAR3,*
1Department of Human Anatomy, Faculty of Medicine and Health Sciences,
43400 UPM Serdang, Selangor Darul Ehsan, Malaysia
2Department of Obstetrics & Gynecology, Faculty of Medicine,
Universiti Kebangsaan Malaysia Medical Center, Jalan Yaacob Latif, Bandar Tun
Razak, 56000 Cheras, Kuala Lumpur, Federal Territory, Malaysia
3Department of Physiology, Faculty of Medicine, Universiti Kebangsaan
Malaysia, Preclinical Building, Jalan Yaacob Latif, Bandar Tun Razak, 56000
Cheras, Kuala Lumpur, Federal Territory, Malaysia
Received: 4 February 2021/Accepted: 7 January 2022
Abstract
Preterm births comprise 10.6% of livebirths
worldwide and account for 35% of deaths among newborn babies. Understanding DNA
methylation may offer basic knowledge in the understanding of pathogenesis of
preterm labour. The study was undertaken to determine DNA methylation of matrix
metalloproteinase 1 (MMP1) promoter in term and preterm labour using
methylation-specific polymerase chain reaction (MSP). Thirty maternal venous
blood samples (n=15 each) of term and preterm labour was subjected to bisulfite
treatment prior to MSP. This result was then validated using DNA sequencing.
Evaluation of the sequencing results by CpG islands analysis was performed
using the ClustalW and SPSS software. Primers for MMP1 were located
between -1226 and -1378 upstream from the transcription start site (TSS) that
consisted five CpG islands. Preterm labour group had significantly lower
methylated CpG islands with 39 out of total 75 (52%) compared to the term
labour that has 49 out of 75 methylated CpG islands (65.33%) (t=0.694,
p<0.05). Methylation occurred in 4 out of 5 methylated CpG islands in the
MMP1 promoter where it only involved 2 preterm samples (13.33%) and 7 term
samples (46.47%). This data suggested there were significant lower percentage of
methylated MMP1 in preterm labour. Higher percentage of methylated MMP1 as observed in the term labour, will probably reduce the expression of MMP1,
thus maintaining fibrillar collagen strength on the amniotic membrane and
subsequently maintain the pregnancy till term. In conclusion, preterm labour
has higher percentage of methylated CpG compared with term labour in MMP1 gene.
Keywords: CpG islands; DNA methylation; matrix
metalloproteinase 1; methylation-specific PCR; preterm labour
Abstrak
Kelahiran bayi pramatang merangkumi 10.6% kelahiran
hidup di seluruh dunia dan menyumbang 35% kematian dalam kalangan bayi yang
baru lahir. Pemahaman mengenai metilasi DNA boleh menyumbang kepada asas
pengetahuan dalam memahami patogenesis kelahiran bayi pramatang. Kajian ini
dilakukan untuk menentukan metilasi DNA matriks metalloproteinase 1 (MMP1)
promoter dalam kelahiran bayi matang dan bayi pramatang menggunakan analisis
bisulfit, metilasi khusus tindak balas rantaian polimerase (MSP). Tiga puluh
sampel darah vena ibu (n=15 setiap kumpulan) daripada kelahiran bayi matang dan
bayi pramatang menjalani rawatan bisulfit dan seterusnya MSP. Keputusan MSP
disahkan menggunakan penjujukan DNA. Penilaian keputusan penjujukan bagi
analisis gugusan CpG dibuat menggunakan perisian ClustalW dan SPSS. Primer bagi MMP1 terletak di antara -1226 dan -1378 daripada lokasi permulaan
transkripsi (TSS) gen MMP1 yang mengandungi lima gugusan CpG. Kumpulan
kelahiran bayi pramatang mempunyai gugusan CpG metilasi yang signikannya lebih
rendah iaitu 39 daripada keseluruhan 75 (52%) berbanding kelahiran bayi matang
yang mempunyai 49 daripada jumlah keseluruhan 75 CpG (65.33%) (t=0.694,
p<0.05). Metilasi dikesan pada 4 daripada 5 gugusan CpG dalam promoter MMP1 dan ia hanya melibatkan 2 sampel pramatang (13.33%) dan 7 sampel kelahiran
matang (46.47%). Data ini menunjukkan terdapatnya peratusan signifikan metilasi MMP1 yang lebih rendah dalam kelahiran bayi pramatang. Peratusan
metilasi MMP1 yang lebih tinggi dalam kelahiran bayi matang berpotensi menyebabkan
ekspresi MMP1 berkurangan dan mengekalkan kekuatan kolagen fibrilar
membran amnion, seterusnya mengekalkan kehamilan sehingga tempoh matang.
Kesimpulannya, kelahiran bayi pramatang mempunyai peratusan gugusan CpG
metilasi yang lebih rendah berbanding kelahiran bayi matang bagi gen MMP1.
Kata kunci: Gugusan CpG; kelahiran bayi pramatang;
matriks metalloproteinase 1; metilasi DNA; metilasi khusus tindak balas
rantaian polimerase (MSP)
REFERENCES
Amar, S., Smith,
L. & Fields, G.B. 2017. Matrix metalloproteinase collagenolysis in health
and disease. Biochimica et Biophysica Acta (BBA)-Molecular Cell Research 1864(11): 1940-1951.
Baer, R.J.,
Rogers, E.E., Partridge, J.C., Anderson, J.G., Morris, M., Kuppermann, M.,
Franck, L.S., Rand, L. & Jelliffe-Pawlowski, L.L. 2016. Population-based
risks of mortality and preterm morbidity by gestational age and birth weight. Journal
of Perinatology 36(11): 1008-1013.
Chan, M.A.,
Ciaccio, C.E., Gigliotti, N.M., Rezaiekhaligh, M., Siedlik, J.A., Kennedy, K.
& Barnes, C.S. 2017. DNA methylation levels associated with race and
childhood asthma severity. Journal of Asthma 54(8): 825-832.
Chang, T.J.,
Yang, D.M., Wang, M.L., Liang, K.H., Tsai, P.H., Chiou, S.H., Lin, T.H. &
Wang, C.T. 2020. Genomic analysis and comparative multiple sequences of
SARS-CoV2. Journal of the Chinese Medical Association 83(6): 537-543.
Chawanpaiboon,
S., Vogel, J.P., Moller, A.B., Lumbiganon, P., Petzold, M., Hogan, D.,
Landoulsi, S., Jampathong, N., Kongwattanakul, K., Laopaiboon, M. & Lewis,
C. 2019. Global, regional, and national estimates of levels of preterm birth in
2014: A systematic review and modelling analysis. The Lancet Global Health 7(1): e37-e46.
Chu, C.H.,
Chang, S.C., Wang, H.H., Yang, S.H., Lai, K.C. & Lee, T.C. 2018. Prognostic
values of EPDR1 hypermethylation and its inhibitory function on tumor invasion
in colorectal cancer. Cancers 10(10): 393.
Cross, S.H.
& Bird, A.P. 1995. CpG islands and genes. Current Opinion in Genetics
& Development 5(3): 309-314.
Dugué, P.A.,
Jung, C.H., Joo, J.E., Wang, X., Wong, E.M., Makalic, E., Schmidt, D.F.,
Baglietto, L., Severi, G., Southey, M.C. & English, D.R. 2020. Smoking and
blood DNA methylation: An epigenome-wide association study and assessment of
reversibility. Epigenetics 15(4): 358-368.
Eo, S.H., Choi,
S.Y. & Kim, S.J. 2016. PEP-1-SIRT2-induced matrix metalloproteinase-1
and-13 modulates type II collagen expression via ERK signaling in rabbit
articular chondrocytes. Experimental Cell Research 348(2): 201-208.
Frey, H.A.,
Stout, M.J., Pearson, L.N., Tuuli, M.G., Cahill, A.G., Strauss III, J.F.,
Gomez, L.M., Parry, S., Allsworth, J.E. & Macones, G.A. 2016. Genetic
variation associated with preterm birth in African-American women. American Journal of Obstetrics &
Gynecology 215(2): 235.e1-235.e8.
Geng, J., Huang,
C. & Jiang, S. 2016. Roles and regulation of the matrix metalloproteinase
system in parturition. Molecular
Reproduction and Development 83(4): 276-286.
Gil, M.M.,
Galeva, S., Jani, J., Konstantinidou, L., Akolekar, R., Plana, M.N. &
Nicolaides, K.H. 2019. Screening for trisomies by cfDNA testing of maternal
blood in twin pregnancy: Update of the fetal medicine foundation results and
meta-analysis. Ultrasound Obstet Gynecol. 53(6): 734-742.
Hafström, M.,
Källén, K., Serenius, F., Maršál, K., Rehn, E., Drake, H., Ådén, U., Farooqi,
A., Thorngren-Jerneck, K. & Strömberg, B. 2018. Cerebral palsy in extremely
preterm infants. Pediatrics 141(1): e20171433.
Hattori, N.
& Ushijima, T. 2017. Analysis of gene-specific DNA methylation. In Handbook
of Epigenetics, edited by Tollefsbol, T.O. Cambridge: Acedemic Press. pp. 113-123.
Herman, J.G.,
Graff, J.R., Myöhänen, S.B.D.N., Nelkin, B.D. & Baylin, S.B. 1996.
Methylation-specific PCR: A novel PCR assay for methylation status of CpG
islands. Proceedings of the National Academy of Sciences 93(18): 9821-9826.
Hong, X.,
Sherwood, B., Ladd-Acosta, C., Peng, S., Ji, H., Hao, K., Burd, I., Bartell,
T.R., Wang, G., Tsai, H.J., Liu, X., Ji, Y., Wahl, A., Caruso, D., Lee-Parritz,
A., Zuckerman, C. & Wang, X. 2018.
Genome-wide DNA methylation associations with spontaneous preterm birth in US
blacks: Findings in maternal and cord blood samples. Epigenetics 13(2): 163-172.
Houben, E.,
Smits, E., Pimenta, J.M., Black, L.K., Bezemer, I.D. & Beest, F.J.P. 2019.
Increased risk of morbidities and health‐care utilisation in children
born following preterm labour compared with full‐term labour: A
population‐based study. Journal of Paediatrics and Child Health 55(4): 446-453.
Hug, L., David,
S. & You, D. 2017. Levels and Trends in Child Mortality: Report 2017.
New York: UNICEF.
Hung, J.H. &
Weng, Z. 2016. Sequence alignment and homology search with BLAST and ClustalW. Cold
Spring Harbor Protocols 2016(11): 093088.
Jang, H.S.,
Shin, W.J., Lee, J.E. & Do, J.T. 2017. CpG and non-CpG methylation in
epigenetic gene regulation and brain function. Genes 8(6): 148.
Kader, F. &
Ghai, M. 2017. DNA methylation-based variation between human populations. Molecular
Genetics and Genomics 292(1): 5-35.
Kim, S. &
Kaang, B.K. 2017. Epigenetic regulation and chromatin remodeling in learning
and memory. Experimental & Molecular Medicine 49(1): e281.
King, A.D.,
Huang, K., Rubbi, L., Liu, S., Wang, C.Y., Wang, Y., Pellegrini, M. & Fan,
G. 2016. Reversible regulation of promoter and enhancer histone landscape by
DNA methylation in mouse embryonic stem cells. Cell Reports 17(1):
289-302.
Konwar, C.,
Price, E.M., Wang, L.Q., Wilson, S.L., Terry, J. & Robinson, W.P. 2018. DNA
methylation profiling of acute chorioamnionitis-associated placentas and fetal
membranes: insights into epigenetic variation in spontaneous preterm births. Epigenetics Chromatin 11(1): 63.
Krane, S.M.
1995. Is collagenase (matrix metalloproteinase-1) necessary for bone and other
connective tissue remodeling? Clinical
Orthopaedics and Related Research 1(313): 47-53.
Li, C., Xiong,
W., Liu, X., Xiao, W., Guo, Y., Tan, J. & Li, Y. 2019. Hypomethylation at
non-CpG/CpG sites in the promoter of HIF-1alpha gene combined with enhanced
H3K9Ac modification contribute to maintain higher HIF-1alpha expression in
breast cancer. Oncogenesis 8(4): 1-18.
Linner, A. &
Almgren, M. 2020. Epigenetic programming-the important first 1000 days. Acta Paediatrica 109(3): 443-452.
Litwiniuk, M.,
Radowicka, M., Krejner, A., Wielgoś, M. & Grzela, T. 2017. The
MMP-9/TIMP-1 imbalance and the reduced level of TGF-β in the cervical area
of amniotic membrane is a possible risk factor of PROM and premature
labor—proof-of-concept study. Ginekologia Polska 88(7): 379-384.
Liu, Z.J. &
Maekawa, M. 2003. Polymerase chain reaction-based methods of DNA methylation
analysis. Analytical biochemistry 317(2): 259-265.
Lombardi, A.,
Makieva, S., Rinaldi, S.F., Arcuri, F., Petraglia, F. & Norman, J.E. 2018.
Expression of matrix metalloproteinases in the mouse uterus and human
myometrium during pregnancy, labor, and preterm labor. Reproductive Sciences 25(6): 938-949.
Maymon, E.,
Romero, R., Pacora, P., Gervasi, M.T., Bianco, K., Ghezzi, F. & Yoon, B.H. 2000.
Evidence for the participation of interstitial collagenase (matrix
metalloproteinase 1) in preterm premature rupture of membranes. American Journal of Obstetrics and
Gynecology 183(4): 914-920.
Menon, R. &
Richardson, L.S. 2017. Preterm prelabor rupture of the membranes: A disease of
the fetal membranes. Seminars in Perinatology 41(7): 409-419.
Modi, B.P.,
Teves, M.E., Pearson, L.N., Parikh, H.I., Chaemsaithong, P., Sheth, N.U., York,
T.P., Romero, R. & Strauss III, J.F. 2017. Rare mutations and potentially
damaging missense variants in genes encoding fibrillar collagens and proteins
involved in their production are candidates for risk for preterm premature
rupture of membranes. PLoS ONE 12(3): e0174356.
Munchel, Sarah,
Suzanne Rohrback, Carlo Randise-Hinchliff, Sarah Kinnings, Shweta Munchel, S.,
Rohrback, S., Randise-Hinchliff, C., Kinnings, S., Deshmukh, S., Alla, N., Tan,
C., Kia, A., Greene, G., Leety, L., Rhoa, M., Yeats, S., Saul, M., Chou, J., BiancO, K.,
O’Shea, K., Bujold, E., Norwitz, E., Wapner, R., Saade, G. & Kaper, F. 2020.
Circulating transcripts in maternal blood reflect a molecular signature of
early-onset preeclampsia. Science
Translational Medicine 12(550): eaaz0131.
Myntti, T.,
Rahkonen, L., Nupponen, I., Pätäri-Sampo, A., Tikkanen, M., Sorsa, T., Juhila,
J., Andersson, S., Paavonen, J. & Stefanovic, V. 2017. Amniotic fluid
infection in preterm pregnancies with intact membranes. Disease Markers 2017: 8167276.
Nagase, H. &
Woessner, J.F. 1999. Matrix metalloproteinases. Journal of Biological Chemistry 274(31): 21491-21494.
Okazaki, R.,
Ootsuyama, A., Yoshida, Y. & Norimura, T. 2011. Establishment of
methylation-specific PCR for the mouse p53 gene. Molecular Biology International 2011: 938435.
Pajares, M.J.,
Palanca-Ballester, C., Urtasun, R., Alemany-Cosme, E., Lahoz, A. &
Sandoval, J. 2021. Methods for analysis of specific DNA methylation status. Methods 187: 3-12.
Phillips, C.,
Velji, Z., Hanly, C. & Metcalfe, A. 2017. Risk of recurrent spontaneous
preterm birth: A systematic review and meta-analysis. BMJ Open 7(6): e015402.
Ramalho-Carvalho,
J., Henrique, R. & Jerónimo, C. 2018. Methylation-specific PCR. In DNA
Methylation Protocols, edited by Tost, J. New York: Springer. pp. 447-472.
de Andrade
Ramos, B.R. & da Silva, M.G. 2018. The burden of genetic and epigenetic
traits in prematurity. Reproductive Sciences 25(4): 471-479.
Saif, I., Kasmi,
Y., Allali, K. & Ennaji, M.M. 2018. Prediction of DNA methylation in the
promoter of gene suppressor tumor. Gene 651: 166-173.
Santos Jr.,
H.P., Bhattacharya, A., Martin, E.M., Addo, K., Psioda, M., Smeester, L.,
Joseph, R.M., Hooper, S.R., Frazier, J.A., Kuban, K.C., O’Shea, T.M. & Fry,
R.C. 2019. Epigenome-wide DNA methylation in placentas from preterm infants: Association
with maternal socioeconomic status. Epigenetics 14(8): 751-765.
Sarda, S., Das,
A., Vinson, C. & Hannenhalli, S. 2017. Distal CpG islands can serve as
alternative promoters to transcribe genes with silenced proximal promoters. Genome Research 27(4): 553-566.
Šestáková, Š.,
Šálek, C. & Remešová, H. 2019. DNA methylation validation methods: A
coherent review with practical comparison. Biological Procedures Online 21(1): 1-11.
Shah, M.R. 2017.
Preterm perlabour repture membranes - Overview. Indian Journal of Perinatology and Reproductive Biology 7(4):
108-138.
Singer, B.D.
2019. A practical guide to the measurement and analysis of DNA methylation. American
Journal of Respiratory Cell and Molecular Biology 61(4): 417-428.
Skinner, M.K.,
Ben Maamar, M., Sadler-Riggleman, I., Beck, D., Nilsson, E., McBirney, M.,
Klukovich, R., Xie, Y., Tang, C. & Yan, W. 2018. Alterations in sperm DNA
methylation, non-coding RNA and histone retention associate with DDT-induced
epigenetic transgenerational inheritance of disease. Epigenetics &
Chromatin 11(1): 1-24.
Soozangar, N.,
Sadeghi, M.R., Jeddi, F., Somi, M.H., Shirmohamadi, M. & Samadi, N. 2018.
Comparison of genome-wide analysis techniques to DNA methylation analysis in
human cancer. Journal of Cellular Physiology 233(5): 3968-3981.
Spainhour, J.C.,
Lim, H.S., Yi, S.V. & Qiu, P. 2019. Correlation patterns between DNA
methylation and gene expression in the cancer genome atlas. Cancer Informatics 18: 1176935119828776.
Sundrani, D.,
Narang, A., Mehendale, S., Joshi, S. & Chava-Gautam, P. 2017. Investigating
the expression of MMPs and TIMPs in preterm placenta and role of CpG
methylation in regulating MMP‐9 expression. IUBMB Life 69(12):
985-993.
Tchirikov, M.,
Schlabritz-Loutsevitch, N., Maher, J., Buchmann, J., Naberezhnev, Y., Winarno,
A.S. & Seliger, G. 2018. Mid-trimester preterm premature rupture of
membranes (PPROM): Etiology, diagnosis, classification, international
recommendations of treatment options and outcome. Journal of Perinatal
Medicine 46(5): 465-488.
Thompson, J.D.,
Higgins, D.G. & Gibson, T.J. 1994. CLUSTAL W: Improving the sensitivity of
progressive multiple sequence alignment through sequence weighting,
position-specific gap penalties and weight matrix choice. Nucleic Acids Research 22(22): 4673-4680.
Vadillo-Ortega,
F., Hernandez, A., Gonzalez-Avila, G., Bermejo, L., Iwata, K. & Strauss
III, J.F. 1996. Increased matrix metalloproteinase activity and reduced tissue
inhibitor of metalloproteinases-1 levels in amniotic fluids from pregnancies
complicated by premature rupture of membranes. American Journal of Obstetrics and Gynecology 174(4): 1371-1376.
Wang, H., Ogawa,
M., Wood, J.R., Bartolomei, M.S., Sammel, M.D., Kusanovic, J.P., Walsh, S.W. Romero,
R. & Strauss III, J.F. 2008. Genetic and epigenetic mechanisms combine to
control MMP1 expression and its association with preterm premature rupture of
membranes. Hum. Mol. Genet 17(8): 1087-1096.
doi: 10.1093/hmg/ddm381.
Wang, Z., Lu,
S., Liu, C., Zhao, B., Pei, K., Tian, L. & Ma, X. 2010. Expressional and
epigenetic alterations of placental matrix metalloproteinase 9 in preeclampsia. Gynecol. Endocrinol. 26(2): 96-102.
Weeding, E.,
Coit, P., Yalavarthi, S., Kaplan, M.J., Knight, J.S. & Sawalha, A.H. 2018.
Genome-wide DNA methylation analysis in primary antiphospholipid syndrome
neutrophils. Clinical Immunology 196: 110-116.
Ørntoft, M.B.W.,
Jensen, S.Ø., Hansen, T.B., Bramsen, J.B. & Andersen, C.L. 2017.
Comparative analysis of 12 different kits for bisulfite conversion of
circulating cell-free DNA. Epigenetics 12(8): 626-636.
WHO. 1970. The
Prevention of Perinatal Mortality and Morbidity. Geneva: World Health
Organization (WHO).
Xu, M., Bian,
S., Li, J., He, J., Chen, H., Ge, L., Jiao, Z., Zhang, Y., Peng, W., Du, F.,
Mo, Y. & Gong, A. 2016. MeCP2 suppresses LIN28A expression via binding to
its methylated-CpG islands in pancreatic cancer cells. Oncotarget 7(12): 14476-14485.
Zakar, T. &
Paul, J.W. 2020. Fetal membrane epigenetics. Frontiers in Physiology 11:
588539.
Zhang, D., Wu,
B., Wang, P., Wang, Y., Lu, P., Nechiporuk, T., Floss, T., Greally, J.M.,
Zheng, D. & Zhou, B. 2017. Non-CpG methylation by DNMT3B facilitates REST
binding and gene silencing in developing mouse hearts. Nucleic Acids Research 45(6): 3102-3115.
Zhang, Q., Xiao,
X., Zheng, J., Li, M., Yu, M., Ping, F., Wang, T. & Wang, X. 2019. A
maternal high-fat diet induces DNA methylation changes that contribute to
glucose intolerance in offspring. Frontier
in Endocrinology 10: 871.
*Corresponding author; email: mz_nurul@upm.edu.my
|