Sains Malaysiana 51(7)(2022):
2119-2128
http://doi.org/10.17576/jsm-2022-5107-14
Optimization
and Characterization of Fatty Acid Esters (FAES) Based Nanostructured Lipid
Carrier (NLC) by Box-Behnken Analysis
(Pengoptimuman dan Pencirian Ester Asid Lemak (FAES) Berasaskan Pembawa Lipid Berstruktur Nano (NLC) oleh Analisis Box-Behnken)
SARAH SHAZWANI S. & MISNI MISRAN*
Department of Chemistry, Faculty of Science, University
of Malaya, 50603
Kuala Lumpur, Federal Territory, Malaysia
Received: 29 August 2021/Accepted: 30 December 2021
Abstract
An unfavorable rate of toxicity and hydrophobicity of active
substance in water has prompted the development of an improved active
ingredients delivery systems such as nanostructured lipid carriers (NLC). This
present study investigates varying components of NLCs compositions to achieve
an optimized and stable colloidal suspension of NLCs through Box-Behnken design
analysis for potential use as an active substance carrier system. The optimised
formulation is comprised of 2.9% stearic acid, 0.4% MCT, 0.3% IPM, 0.37% Tween
20, 0.23% Span 20 and 96% deionised water (DW). The mean particle size,
polydispersity index, and zeta potential of the optimized NLCs were 322±13.5 nm, 0.199±0.04, and -36±0.1 mV, respectively. Based
on the TEM micrograph, NLCs can be observed as having an elongated spherical
shape with a dense appearance.
Keywords: Box-Behnken design; isopropyl myristate; medium-chain triglyceride;
nanostructured lipid carrier; surfactant
Abstrak
Tahap ketoksikan dan sifat hidrofobik sesetengah bahan aktif yang kurang memberangsangkan telah mendorong kepada kajian berkenaan sistem penyampaian ubat yang lebih baik seperti pembawa lipid berstruktur nano (NLC). Justeru, penyelidikan ini mengkaji potensi NLC sebagai sistem pembawa ubat yang baik melalui penelitian kepelbagaian komponen komposisi NLC untuk mencapai suspensi koloid yang stabil dan optimum melalui analisis reka bentuk Box-Behnken. Formulasi yang dioptimumkan terdiri daripada 2.9% asid stearat, 0.4% MCT, 0.3% IPM,
0.37% Tween 20, 0.23% Span 20 dan 96% air deionisasi (DW). Saiz zarah min, indeks polidispersi dan potensi zeta NLC yang optimum masing-masing adalah 322±13.5 nm, 0.199±0.04 dan -36±0.1 mV. Berdasarkan mikrograf TEM, NLC dapat dilihat memiliki bentuk sfera memanjang dengan penampilan yang padat.
Kata kunci: Isopropil miristat; pembawa lipid berstruktur nano; reka bentuk Box-Behnken; surfaktan; trigliserida rantai sederhana (MCT)
REFERENCES
Bnyan, R., Khan, I., Ehtezazi, T., Saleem, I., Gordon, S., O'Neill, F. & Roberts, M. 2018. Surfactant effects on lipid-based vesicles properties. Journal of Pharmaceutical Sciences 107(5): 1237-1246.
Dudhipala, N.
& Gorre, T. 2020. Neuroprotective effect of ropinirole lipid nanoparticles
enriched hydrogel for parkinson’s disease: In vitro, ex vivo, pharmacokinetic and pharmacodynamic evaluation. Pharmaceutics 12(5): 448.
Eh
Suk, V.R., Latif, F.M., Teo, Y.Y. & Misran, M. 2020. Development of
nanostructured lipid carrier (NLC) assisted with polysorbate nonionic
surfactants as a carrier for L -ascorbic acid and Gold Tri.E 30. Journal of
Food Science and Technology 57(9): 3259-3266.
Ferreira,
S.C., Bruns, R.E., Ferreira, H.S., Matos, G.D., David, J.M., Brandão, G.C., da
Silva, E.P., Portugal, L.A., Dos Reis, P.S., Souza, A.S. & Dos Santos,
W.N.L. 2007. Box-Behnken design: An alternative for the optimization of
analytical methods. Analytica Chimica Acta 597(2): 179-186.
Gardouh,
A.R., Faheim, S.H., Noah, A.T. & Ghorab, M.M. 2018. Influence of
formulation factors on the size of nanostructured lipid carriers and
nanoemulsions prepared by high shear homogenization. International Journal
of Pharmacy and Pharmaceutical Sciences 10(4): 61-75.
Gordillo-Galeano, A. & Mora-Huertas, C.E. 2018. Solid lipid nano-particles and nanostructured lipid carriers: A review emphasizing on particle structure and drug release. Eur. J. Pharm. Biopharm. 133: 285-308.
Han,
F., Li, S., Yin, R., Liu, H. & Xu, L. 2008. Effect of surfactants on the
formation and characterization of a new type of colloidal drug delivery system:
Nanostructured lipid carriers. Colloids and Surfaces A: Physicochemical and
Engineering Aspects 315(1-3): 210-216.
Kaur,
P., Garg, T., Rath, G., Murthy, R.S.R. & Goyal, A.K. 2016. Development,
optimization and evaluation of surfactant-based pulmonary nanolipid carrier
system of paclitaxel for the management of drug resistance lung cancer using
Box-Behnken. Drug Delivery 23(6): 1912-1925.
Khezri,
K., Saeedi, M. & Dizaj, S.M. 2018. Application of nanoparticles in
percutaneous delivery of active ingredients in cosmetic preparations. Biomedicine
& Pharmacotherapy 106: 1499-1505.
Kothekar,
S.C., Ware, A.M., Waghmare, J.T. & Momin, S.A. 2007. Comparative analysis
of the properties of Tween‐20, Tween‐60, Tween‐80,
Arlacel‐60, and Arlacel‐80. Journal of Dispersion Science and
Technology 28(3): 477-484.
Mishra, D.K., Shandilya, R. & Mishra, P.K. 2018. Lipid based nanocarriers: A translational perspective. Nanomedicine: Nanotechnology, Biology and Medicine 14(7): 2023-2050.
Müller,
R.H., Radtke, M. & Wissing, S.A. 2002. Solid lipid nanoparticles (SLN) and
nanostructured lipid carriers (NLC) in cosmetic and dermatological
preparations. Advanced Drug Delivery Reviews 54: S131-S155.
Ni,
S., Sun, R., Zhao, G. & Xia, Q. 2014. Quercetin loaded nanostructured lipid
carrier for food fortification: Preparation, characterization and in vitro study. Journal of Food Process Engineering 38(1): 93-106.
Sakamula, R., Yata, T. & Wachiryah, T-A. 2021. Effects of alpha-mangostin encapsulated in nanostructured lipid carriers in mice with cerebral ischemia reperfusion injury. Sains Malaysiana 50(7): 2007-2015.
Sarheed,
O., Dibi, M. & Ramesh, K.V.R.N.S. 2020. Studies on the effect of oil and
surfactant on the formation of alginate-based O/W lidocaine nanocarriers using
nanoemulsion template. Pharmaceutics 12(12): 1223.
Severino, P., Pinho, S.C., Souto, E.B. & Santana, M.H.A. 2011. Polymorphism, crystallinity and hydrophilic-lipophilic balance of stearic acid and stearic acid-capric/caprylic triglyceride matrices for production of stable nanoparticles. Colloids and Surfaces B: Biointerfaces 86(1): 125-130.
Shirodkar, R.K., Kumar, L., Mutalik, S. & Lewis, S. 2019. Solid lipid nanoparticles and nanostructured lipid carriers: Emerging lipid based drug delivery systems. Pharmaceutical Chemistry Journal 53(5): 440-453.
Souto,
E.B. & Müller, R.H. 2006. Investigation of the factors influencing the
incorporation of clotrimazole in SLN and NLC prepared by hot high-pressure
homogenization. Journal of Microencapsulation 23(4): 377-388.
Subramaniam,
B., Siddik, Z.H. & Nagoor, N.H. 2020. Optimization of nanostructured lipid
carriers: Understanding the types, designs, and parameters in the process of
formulations. Journal of Nanoparticle Research 22(6): 1-29.
Teo, Y.Y., Misran, M., Low, K.H. & Zain, S.M. 2011. Effect of unsaturation on the stability of C18 polyunsaturated fatty acids vesicles suspension in aqueous solution. Bulletin of the Korean Chemical Society 32(1): 59-64.
Vieira,
R., Severino, P., Nalone, L.A., Souto, S.B., Silva, A.M., Lucarini, M., Durazzo,
A., Santini, A. & Souto, E.B. 2020. Sucupira oil-loaded nanostructured
lipid carriers (NLC): Lipid screening, factorial design, release profile, and
cytotoxicity. Molecules 25(3): 685.
Yew,
H.C. & Misran, M. 2019. Progress in drug discovery & biomedical science
characterization of fatty acid based nanostructured lipid carrier (NLC) and
their sustained release properties. Progress in Drug Discovery &
Biomedical Science 2(1): 1-7.
Zhang,
N., Liu, C., Jin, L., Zhang, R., Siebert, H.C., Wang, Z., Prakash, S., Yin, X.,
Li, J., Hou, D. & Sun, B. 2020. Influence of long-chain/medium-chain
triglycerides and whey protein/tween 80 ratio on the stability of
phosphatidylserine emulsions (O/W). ACS Omega 5(14): 7792-7801.
*Corresponding
author; email: misni@um.edu.my
|