Sains Malaysiana 51(7)(2022):
2129-2136
http://doi.org/10.17576/jsm-2022-5107-15
Interleukin-1b and Interferon-g are Associated with
Malaria-Induced Hypoinsulinemic Hypoglycemia in Plasmodium berghei Anka-Infected Mice
(Interleukin-1b dan Interferon-g dikaitkan dengan Hipoglisemia Hipoinsulinemik Mengaruh
Malaria pada Tikus yang Dijangkiti Plasmodium berghei Anka)
RUJIKORN RATTANATHAM1,2 &
VORAVUTH SOMSAK1,2,*
1School
of Allied Health Sciences, Walailak University, Nakhon Si Thammarat 80160,
Thailand
2Research
Excellence Center for Innovation and Health Products, Walailak University,
Nakhon Si Thammarat 80160, Thailand
Received: 17 May 2021/Accepted: 30 November 2021
Abstract
Malaria-induced
hypoglycemia is recognized as a serious complication of malaria and has one of
the strongest associations with mortality in children. It has been speculated
that oxidative stress and pro-inflammatory response during parasite infection
were involved in its pathophysiology. Hence, this study aimed to investigate
the development of malaria-induced hypoglycemia during Plasmodium berghei ANKA (PbANKA) infection with particular attention to the involvement of
c-peptide, interleukin-1b (IL-1b), and interferon-g (IFN-g). ICR
mice were infected with 1×107 parasitized erythrocytes of PbANKA,
and parasitemia was monitored, and
the development of hypoglycemia was assessed by measuring plasma glucose
levels. The change of c-peptide level was evaluated. The pro-inflammatory
response of IL-1b and
IFN-g were
also quantified in plasma. It was found that PbANKA infection resulted in
hypoglycemia as indicated by a significantly (P < 0.05) decrease in
plasma glucose levels on day 4 post-infection and associated with parasitemia.
The c-peptide was slightly increased at day 2 post-infection, and then
significantly (P < 0.05) decreased since day 4. Furthermore, we
observed a significantly (P < 0.05) increased IL-1b,
firstly responded, at day 2 post-infection followed by increasing the IFN-g level
at day 4 in PbANKA-induced hypoglycemia. Our findings support the idea that
hypoinsulinemic hypoglycemia in the PbANKA infected mice may be involved in the
high IL-1b and
IFN-g against the parasite infection.
Keywords:
Hypoglycemia; IFN-g; IL-1b; malaria;
Plasmodium berghei
Abstrak
Hipoglisemia yang disebabkan oleh malaria dikenali sebagai
komplikasi malaria yang serius dan mempunyai salah satu kaitan paling kuat
dengan kematian yang berlaku dalam kalangan kanak-kanak. Spekulasi bahawa tekanan
oksidatif dan tindak balas pro-radang semasa jangkitan parasit terlibat dengan patofisiologinya.
Oleh itu, kajian ini bertujuan untuk mengkaji perkembangan hipoglikemia yang
disebabkan oleh malaria semasa jangkitan Plasmodium berghei ANKA (PbANKA)
dengan perhatian khusus dilakukan terhadap penglibatan c-peptida, interleukin-1b (IL-1b) dan
interferon-g (IFN-g). Tikus ICR telah dijangkiti dengan 1×107 eritrosit parasit PbANKA dan parasitemia dipantau dan perkembangan hipoglikemia
dinilai dengan mengukur tahap glukosa pada plasma. Perubahan tahap c-peptida
ini dinilai. Tindak balas pro-radang IL-1b dan IFN-g juga dikira pada plasma. Jangkitan PbANKA didapati
telah mengakibatkan hipoglikemia dan berlakunya penurunan ketara (P <0.05) dalam paras glukosa plasma
pada hari ke-4 selepas jangkitan dan dikaitkan dengan parasitemia. C-peptida
meningkat sedikit pada hari ke-2 selepas jangkitan dan kemudian menurun dengan
ketara (P <0.05) pada hari ke-4.
Seterusnya peningkatan ketara (P <0.05) IL-1b berlaku, yang
mula bertindak balas, pada hari ke-2 selepas jangkitan diikuti dengan
meningkatkan tahap IFN-g pada hari
ke-4 dalam hipoglikemia yang disebabkan oleh PbANKA. Penemuan kajian menyokong
idea bahawa hipoglikemia hipoinsulinemia pada tikus yang dijangkiti PbANKA
mungkin terlibat dalam peningkatan IL-1b dan IFN-g terhadap jangkitan parasit.
Kata kunci: Hipoglisemia; IFN-g; IL-1b; malaria; Plasmodium berghei
REFERENCES
Arora,
G., Hart, G.T., Manzella-Lapeira, J., Doritchamou, J.Y., Narum, D.L., Thomas,
L.M., Brzostowski, J., Rajagopalan, S., Doumbo, O.K., Traore, B. & Miller,
L.H. 2018. NK cells inhibit Plasmodium falciparum growth in red blood
cells via antibody-dependent cellular cytotoxicity. Elife 7: 36806.
Asmilia,
N., Aliza, D., Fahrimal, Y., Abrar, M. & Ashary, S. 2020. Malacca leaf
ethanolic extract (Phyllanthus emblica) as a hepatoprotector of the
liver of mice (Mus musculus) infected with Plasmodium berghei. Veterinary
World 13(7): 1457.
Barlow,
J., Solomon, T.P.J. & Affourtit, C. 2018. Pro-inflammatory cytokines
attenuate glucose-stimulated insulin secretion from INS-1E insulinoma cells by
restricting mitochondrial pyruvate oxidation capacity - Novel mechanistic
insight from real-time analysis of oxidative phosphorylation. PLoS ONE 13(6): e0199505-e05.
Barnes,
L. 2018. Immunology and Microbiology. Waltham Abbey, United Kingdom: Edtech Press.
Boonyapranai,
K., Surinkaew, S., Somsak, V. & Rattanatham, R. 2021. Protective effects of Gymnema inodorum leaf extract on Plasmodium berghei-induced
hypoglycemia, dyslipidemia, liver damage, and acute kidney injury in
experimental mice. Journal of
Parasitology Research 2021: 1896997.
del
Rey, A. & Besedovsky, H. 1989. Antidiabetic effects of interleukin 1. Proceedings of the National Academy of
Sciences of the United States of America 86(15): 5943-5947.
Elased,
K. & Playfair, J.H. 1994. Hypoglycemia and hyperinsulinemia in rodent
models of severe malaria infection. Infection
and Immunity 62(11): 5157-5160.
Fei,
H., Zhao, B., Zhao, S. & Wang, Q. 2008. Requirements of calcium fluxes and
ERK kinase activation for glucose-and interleukin-1β-induced β-cell
apoptosis. Molecular & Cellular Biochemistry 315(1): 75-84.
Franklin,
B.S., Parroche, P., Ataíde, M.A., Lauw, F., Ropert, C., de Oliveira, R.B., Pereira,
D., Tada, M.S., Nogueira, P., da Silva, L.H.P. & Bjorkbacka, H. 2009.
Malaria primes the innate immune response due to interferon-γ induced
enhancement of toll-like receptor expression and function. Proceedings
of the National Academy of Science 106(14): 5789-5794.
Han,
H.S., Kang, G., Kim, J.S., Choi, B.H. & Koo, S.H. 2016. Regulation of
glucose metabolism from a liver-centric perspective. Experimental &
Molecular Medicine 48(3): e218-e218.
Leighton,
E., Sainsbury, C.A. & Jones, G.C. 2017. A practical review of C-peptide
testing in diabetes. Diabetes Therapy 8(3): 475-487.
Liehl,
P., Meireles, P., Albuquerque, I.S., Pinkevych, M., Baptista, F., Mota, M.M.,
Davenport, M.P. & Prudêncio, M. 2015. Innate immunity induced by Plasmodium liver infection inhibits malaria reinfections. Infection
and Immunity 83(3): 1172-1180.
Madrid,
L., Lanaspa, M., Maculuve, S.A. & Bassat, Q. 2015. Malaria-associated
hypoglycaemia in children. Expert Review of Anti-Infective Therapy 13(2): 267-277.
Maedler,
K., Størling, J., Sturis, J., Zuellig, R.A., Spinas, G.A., Arkhammar, P.O.,
Mandrup-Poulsen, T. & Donath, M.Y. 2004. Glucose-and
interleukin-1β-induced β-cell apoptosis requires Ca2+ influx and extracellular signal-regulated kinase (ERK) 1/2 activation and is
prevented by a sulfonylurea receptor 1/inwardly rectifying K+ channel 6.2 (SUR/Kir6. 2) selective potassium channel opener in human
islets. Diabetes 53(7): 1706-1713.
Mak,
T.W., Saunders, M.E. & Jett, B.D. 2013. Primer to the Immune
Response. 2nd ed. AP Cell.
Maniam,
P., Hassan, Z.A.A., Embi, N. & Sidek, H.M. 2012. Changes in hepatic
phosphoprotein levels in mice infected with Plasmodium berghei. Sains Malaysiana 41(6): 721-729.
Mayer-Barber,
K.D. & Yan. B. 2017. Clash of the cytokine titans: Counter-regulation of
interleukin-1 and type I interferon-mediated inflammatory responses. Cellular & Molecular Immunology 14(1):
22-35.
Metzger,
S., Nusair, S., Planer, D., Barash, V., Pappo, O., Shilyansky, J. &
Chajek-Shaul, T. 2004. Inhibition of hepatic gluconeogenesis and enhanced
glucose uptake contribute to the development of hypoglycemia in mice bearing
interleukin-1β-secreting tumor. Endocrinology 145(11):
5150-5156.
Meyerovich,
K., Ortis, F. & Cardozo, A.K. 2018. The non-canonical NF-κB pathway
and its contribution to β-cell failure in diabetes. Journal of
Molecular Endocrinology 61(2): F1-F6.
Mills,
E.L., Kelly, B. & O'Neill, L.A.J. 2017. Mitochondria are the powerhouses of
immunity. Nature Immunology 18(5):
488-498.
Nano,
E., Petropavlovskaia, M. & Rosenberg, L. 2021. Islet neogenesis associated
protein (INGAP) protects pancreatic β cells from IL-1β and
IFNγ-induced apoptosis. Cell Death Discovery 7(1): 1-15.
Ogetii,
G.N., Akech, S., Jemutai, J., Boga, M., Kivaya, E., Fegan, G. & Maitland,
K. 2010. Hypoglycaemia in severe malaria, clinical associations and
relationship to quinine dosage. BMC Infectious Diseases 10(1): 1-9.
Ounjaijean,
S., Chachiyo, S. & Somsak, V. 2019. Hypoglycemia induced by Plasmodium
berghei infection is prevented by treatment with Tinospora crispa stem extract. Parasitology International 68(1): 57-59.
Planche,
T. & Krishna, S. 2006. Severe malaria: Metabolic complications. Current Molecular Medicine 6(2):
141-153.
Ramos,
S., Carlos, A.R., Sundaram, B., Jeney, V., Ribeiro, A., Gozzelino, R., Bank,
C., Gjini, E., Braza, F., Martins, R. & Ademolue, T.W. 2019. Renal control
of disease tolerance to malaria. Proceedings
of the National Academy of Sciences of the United States of America 116(12):
5681-5686.
Richards,
A.L. 1997. Tumour necrosis factor and associated cytokines in the host's
response to malaria. International
Journal for Parasitology 27(10): 1251-1263.
Roe,
J.K. & Pasvol, G. 2009. New developments in the management of malaria in
adults. QJM: An International Journal of
Medicine 102(10): 685-693.
Roth,
E.J. 1990. Plasmodium falciparum carbohydrate metabolism: A connection
between host cell and parasite. Blood
Cells 16(2-3): 453-466.
Sengupta,
A., Ghosh, S., Sharma, S. & Sonawat, H.M. 2020. Early perturbations in
glucose utilization in malaria-infected murine erythrocytes, liver and brain
observed by metabolomics. Metabolites 10(7): 277.
Shi,
J., Fan, J., Su, Q. & Yang, Z. 2019. Cytokines and abnormal glucose and lipid
metabolism. Frontiers in Endocrinology 10: 703.
Taverne,
J., Sheikh, N., Elased, K. & Playfair, J. 1995. Malaria toxins:
Hypoglycaemia and TNF production are induced by different components. Parasitology
Today 11(12): 462-463.
Thomas,
H.E., Darwiche, R., Corbett, J.A. & Kay, T.W. 2002. Interleukin-1 plus
gamma-interferon-induced pancreatic beta-cell dysfunction is mediated by
beta-cell nitric oxide production. Diabetes 51(2): 311-316.
Tjhin,
E.T., Staines, H.M., Van Schalkwyk, D.A., Krishna, S. & Saliba, K.J. 2013. Studies
with the Plasmodium falciparum hexokinase reveal that PfHT limits the
rate of glucose entry into glycolysis. FEBS
Letters 587(19): 3182-3187.
Tukwasibwe,
S., Nakimuli, A., Traherne, J., Chazara, O., Jayaraman, J., Trowsdale, J., Moffett,
A., Jagannathan, P., Rosenthal, P.J., Cose, S. & Colucci, F. 2020. Variations
in killer-cell immunoglobulin-like receptor and human leukocyte antigen genes
and immunity to malaria. Cellular &
Molecular Immunology 17(8): 799-806.
Van
Niekerk, D.D., Penkler, G.P., du Toit, F. & Snoep, J.L. 2016. Targeting
glycolysis in the malaria parasite Plasmodium
falciparum. FEBS Journal 283(4):
634-646.
Vogel,
S.N., Henricson, B.E. & Neta, R. 1991. Roles of interleukin-1 and tumor
necrosis factor in lipopolysaccharide-induced hypoglycemia. Infection
and Immunity 59(7): 2494-2498.
White,
N.J., Pukrittayakamee, S., Hien, T.T., Faiz, M.A., Mokuolu, O.A. & Dondorp,
A.M. 2014. Malaria. Lancet 383(9918):
723-735.
WHO.
2020. World Malaria Report. Geneva, Switzerland: World Health Organization.
Zhang,
X., Yang, S., Chen, J. & Su, Z. 2019. Unraveling the regulation of hepatic
gluconeogenesis. Frontiers in Endocrinology 9(2019): 802.
*Corresponding
author; email: voravuth.so@wu.ac.th
|