Sains Malaysiana 51(7)(2022):
2211-2222
http://doi.org/10.17576/jsm-2022-5107-22
Streamflow Data Analysis for Flood
Detection using Persistent Homology
(Analisis Data
Aliran Sungai bagi Pengesanan Banjir menggunakan Homologi Gigih)
SYED
MOHAMAD SADIQ SYED MUSA*, MOHD SALMI MD NOORANI, FATIMAH ABDUL
RAZAK, MUNIRA ISMAIL & MOHD ALMIE ALIAS
Department of
Mathematical Sciences, Faculty of Science and Technology, Universiti Kebangsaan
Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia
Received: 20 May 2021/Accepted: 1 December 2021
Abstract
Flooding is an environmental hazard that occurs almost
everywhere around the world. Analysis of streamflow data can give us important
climatic information for flooding events. Persistent homology (PH), a new
analysis tool in topological data analysis (TDA) offers a new way to look at
the information in a data set using qualitative approach. PH uses topology to
extract topological features such as connected components and cycles that exist
in the data set. In this paper, we present a new approach for streamflow data
analysis for flood detection by using PH. An analysis was conducted at Sungai
Kelantan, Malaysia. The result shows that PH gives different pattern of topological
features for dry and wet periods. In particular, there are more persistent
topological features in the form of connected components and cycles in the wet
periods compared to the dry periods. We observed that the time series of the
distance measure corresponding to the evolution of the components is consistent
with the time series of the streamflow data. As a conclusion, this study
suggests that the time series of the distance measure corresponding to the
evolution of the components can be used for flood detection at Sungai Kelantan,
Malaysia.
Keywords:
Flood; persistent homology; streamflow; time delay embedding; topological data
analysis
Abstrak
Banjir
merupakan bencana alam yang berlaku hampir di seluruh dunia. Analisis data
aliran sungai mampu memberikan maklumat iklim yang penting bagi kejadian
banjir. Homologi gigih (HG), suatu alat analisis baharu dalam bidang analisis
data bertopologi (ADB) menawarkan pendekatan baharu bagi mendapatkan maklumat
dalam suatu set data menggunakan pendekatan kualitatif. HG menggunakan konsep
topologi untuk mendapatkan maklumat berkaitan ciri topologi seperti komponen
berkait, lubang dan lompong yang hadir dalam set data tersebut. Kajian ini
membentangkan pendekatan baharu bagi analisis data aliran sungai bagi pengesanan
banjir menggunakan kaedah HG. Suatu analisis telah dijalankan di Sungai
Kelantan, Malaysia. Hasil kajian menunjukkan bahawa HG memberikan corak
ciri-ciri topologi data aliran sungai yang berbeza bagi musim kering dan
banjir. Secara khususnya, terdapat lebih banyak ciri topologi yang gigih dalam
bentuk komponen berkait and lubang pada data musim banjir berbanding musim
kering. Hasil kajian juga menunjukkan bahawa data siri masa ukuran jarak
berkaitan perubahan komponen berkait adalah konsisten dengan data siri masa
aliran sungai. Kesimpulannya, kajian ini mencadangkan data siri masa ukuran
jarak berkaitan perubahan komponen berkait boleh digunakan sebagai ukuran bagi
pengesanan banjir di Sungai Kelantan, Malaysia.
Kata
kunci: Analisis data bertopologi; arus sungai; banjir; homologi gigih;
pembenaman masa penangguhan
REFERENCES
Adnan, N.A. 2010. Quantifying the impacts of
climate and land use changes on the hydrological response of a monsoonal
catchment. Dissertation, University of Southampton, Southampton, England
(Unpublished).
Adenan, N.H. & Noorani, M.S.M. 2016. Multiple
time-scales nonlinear prediction of river flow using chaos approach. Jurnal
Teknologi 78(7): 1-7.
Alias, N.E., Mohamad, H., Chin, W.Y. & Yusop, Z.
2016. Rainfall analysis of the Kelantan big yellow flood 2014. Jurnal
Teknologi 78(9-4): 83-90.
Awadalla, S. & Noor, I.M. 1991. Induced climate
change on surface runoff in Kelantan Malaysia. International Journal of Water Resources Development 7(1): 53-59.
Belmar, O., Velasco, J. & Martinez-Capel, F. 2011.
Hydrological classification of natural flow regimes to support environmental
flow assessments in the intensively regulated Mediterranean rivers, Segura river
basin (Spain). Environmental Management 47(5): 992-1004.
Carlsson, G. 2009. Topology and data. Bulletin of
the American Mathematical Society (N.S) 46(2): 255-308.
Chan, N.W. & Parker, D.J. 1996. Response to
dynamic flood hazard factors in Peninsular Malaysia. The Geographical Journal 162(3): 313-325.
Chang, H. 2007. Comparative streamflow characteristics
for urbanizing basins in the Portland metropolitan area, Oregon, USA. Hydrological
Processes 21(2): 211-222.
Chebana, F., Dabo-Niang, S. & Ouarda, T.B.M.J.
2012. Exploratory functional flood frequency analysis and outlier detection. Water
Resources Research 48(4): W04514.
Cohen-Steiner, D., Edelsbrunner, H. & Harer, J.
2007. Stability of persistence diagrams. Discrete and Computational Geometry 37(1): 103-120.
Drainage and Irrigation Department (DID). 2010. Updating
of Condition of Flooding and Flood Damage Assessment in Malaysia: State Report
for Kelantan. Unpublished report. Kuala Lumpur: DID.
Edelsbrunner, H. & Harer, J. 2010. Computational
Topology: An Introduction. Applied Math Textbook.
Faizah, C.R. 2015. Study on early
forecasting of flood through historical hydrologic data analysis and numerical
simulation in Kelantan Watershed,
Malaysia. Dissertation, University of Tokyo, Tokyo, Japan (Unpublished).
Fasy, B.T., Kim, J., Lecci, F., Maria, C. &
Rouvreau, V. 2021. Statistical Tools for the Topological Data Analysis.https://cran.r-project.org/web/packages/TDA/TDA.pdf.
Fuwape, I.A., Ogunjo, S.T., Oluyamo, S.S. & Rabiu,
A.B. 2016. Spatial variation of deterministic chaos in mean daily temperature
and rainfall over Nigeria. Theoretical and Applied Climatology 130(1-2):
119-132.
Ghrist, R. 2008. Barcodes: The persistent topology of
data. Bulletin of the American Mathematical Society (N.S.) 45(1): 61-75.
Gidea, M. & Katz, Y. 2018. Topological data
analysis of financial time series: Landscapes of crashes. Physica A:
Statistical Mechanics and its Applications 491: 820-834.
Hamid, N.Z. & Noorani, M.S.M. 2017. Aplikasi model
baharu penambahbaikan pendekatan kalut ke atas peramalan siri masa kepekatan
ozon. Sains Malaysiana 46(8): 1333-1339.
Hannah, D.M., Smith, B.P.G., Gurnell, A.M. &
McGregor, G.R. 2000. An approach to hydrograph classification. Hydrological
Processes 14(2): 317-338.
Jonkman, S.N. & Kelman, I. 2005. An analysis of
the causes and circumstances of flood disaster deaths. Disasters 29(1): 75-97.
Khushboo, M. & Shalabh, G. 2017. Topological
characterization and early detection of burifications and chaos in complex
system using persistent homology. Chaos:
An Interdisciplinary Journal of Nonlinear Science 27(5): 051102.
Modaresi, F., Araghinejad,
S. & Ebrahimi, K. 2018. Selected model fusion: An approach for improving
the accuracy of monthly streamflow forecasting. Journal of Hydroinformatics 20(4): 917-933.
Musa, S.M.S., Noorani, M.S.M., Razak, F.A., Ismail,
M., Alias, M.A. & Hussain, S.I. 2020. Using persistent homology as
preprocessing of early warning signals for critical transition in flood. Scientific
Reports 11: 7234.
Musa, S.M.S., Noorani, M.S.M., Razak, F.A., Ismail, M.
& Alias, M.A. 2019. Streamflow data analysis using persistent homology. AIP
Conference Proceedings 2111(1): 020021.
Otter, N., Potter, M.A., Tillmann, U., Grindrod, P.
& Harrington, H.A. 2017. A roadmap for the computation of persistent
homology. EPJ Data Science 6: 17.
Pereira, C.M.M. & de Mello, R.F. 2015. Persistent
homology for time series and spatial data clustering. Expert Systems with
Applications 42(15-16): 6026-6038.
Suhaila, J. & Yusop, Z. 2016. Spatial and temporal
variabilities of rainfall data using functional data analysis. Theoretical
and Applied Climatology 129(1-2): 229-242.
Takens, F. 1981. Detecting strange attractors in
turbulence. In Dynamical Systems and Turbulence, edited by Rand,
D. & Young, LS. Lecture Notes in Mathematics. Vol. 898, Springer, Berlin,
Heildelberg, New York. pp. 336-381.
Zaim, W.N.A.B.W.M. & Hamid, N.Z. 2017. Peramalan
bahan pencemar ozon (O3) di Universiti Pendidikan Sultan Idris, Tanjung
Malim, Perak, Malaysia mengikut monsun dengan menggunakan pendekatan kalut. Sains
Malaysiana 46(12): 2523-2528.
Zulkepli, N.F.S., Noorani, M.S.M., Razak, F.A.,
Ismail, M. & Alias, M.A. 2020a. Cluster analysis of haze episodes based on
topological features. Sustainability 12(10): 3985.
Zulkepli, N.F.S., Noorani, M.S.M., Razak, F.A.,
Ismail, M. & Alias, M.A. 2020b. Pendekatan baharu untuk mengelompok stesen
pengawasan kualiti udara menggunakan homologi gigih. Sains Malaysiana 49(4): 963-970.
Zulkepli, N.F.S., Noorani, M.S.M., Razak, F.A.,
Ismail, M. & Alias, M.A. 2019. Topological characterization of haze
episodes using persistent homology. Aerosol and Air Quality Research 19:
1614-1624.
*Corresponding
author; email: syedmohdsadiq1992@yahoo.com
|