Sains Malaysiana 51(7)(2022):
2249-2264
http://doi.org/10.17576/jsm-2022-5107-25
Performance of a Novel Hybrid Model through Simulation and Historical
Financial Data
(Prestasi Model Hibrid Novel melalui Simulasi dan
Data Kewangan Sejarah)
MD.
JAMAL HOSSAIN1,2 & MOHD TAHIR ISMAIL3
1School of Mathematical
Sciences, Universiti Sains Malaysia, 11800 Pulau Pinang, Malaysia
2Department of Applied
Mathematics, Noakhali Science and Technology University, Noakhali-3814,
Bangladesh
3School of Mathematical
Sciences, Universiti Sains Malaysia, 11800 USM Penang, Pulau Pinang, Malaysia
Received: 24 May
2021/Accepted: 1 January 2022
Abstract
It
is thoroughly acknowledged that the historical financial time series is not
linear, exhibits structural changes, and is volatile. It has been noticed in
the current literature that because of the existence of structural breaks in
the historical time series, the GARCH family models provide misleading results
and poor forecasts. Thus, it is unavoidable to incorporate models with nonlinearity
in the conditional mean and conditional variance to capture volatility dynamics
more precisely than the existing models. Therefore, inspiring in this matter,
this study proposes a novel hybrid model of exponential autoregressive (ExpAR) with a Markov-switching GARCH (MSGARCH) model. This
study also examines volatility dynamics and performances through simulation and
real-world financial data. Moreover, this study investigates downside risk
management performances using 5% VaR (Value-at-Risk)
back-testing. The empirical findings showed that the proposed model outperforms
the benchmark model for both simulation and real-world time series data. The VaR results also showed that the proposed model captures
downside risk more meticulously than the benchmark model.
Keywords: ExpAR model; ExpAR-MSGARCH
model; MSGARCH model; structural breaks; value-at-risk
Abstrak
Diakui secara benar bahawa siri masa kewangan masa lampau
adalah tidak linear, menunjukkan perubahan struktur dan meruap. Dapat dilihat
dalam kepustakaan semasa oleh kerana adanya putusan berstruktur dalam siri masa
lampau, model keluarga GARCH memberikan hasil yang tidak benar dan ramalan yang
lemah. Oleh itu, tidak dapat dielak untuk menggabungkan model yang tidak linear
pada min dan varians bersyarat untuk menguasai dinamik kemeruapan dengan lebih
tepat daripada model sedia ada. Maka, berinspirasi daripada hal ini, kajian ini
mencadangkan model hibrid baharu eksponen autoregresif (ExpAR) dengan model
pertukaran Markov GARCH (MSGARCH). Kajian ini juga mengkaji prestasi dan
dinamik kemeruapan melalui simulasi dan data kewangan dunia yang betul.
Lebih-lebih lagi, penyelidikan ini mengkaji prestasi pengurusan risiko
penurunan menggunakan ujian semula 5% VaR (risiko pada nilai). Penemuan empirik
menunjukkan bahawa model yang dicadangkan mengungguli model penanda aras untuk
kedua-dua simulasi dan data siri masa yang betul. Hasil VaR juga menunjukkan
bahawa model yang dicadangkan menangkap risiko penurunan lebih teliti daripada
model penanda aras.
Kata kunci: Model ExpAR; model ExpAR-MSGARCH; model MSGARCH; putusan berstruktur; risiko pada nilai
REFERENCES
Abdollahi, H. & Ebrahimi, S.B. 2020. A new hybrid model for
forecasting Brent crude oil price. Energy 200: 117520.
Abdulsalam, F. & Bouresli, A. 2019. Price-volume relation behavior
around structural breaks in Kuwait Boursa. Innovative Marketing 15(2):
1-13.
Ali, M.H., Uddin, M.A., Chowdhury, M.A.F. & Masih, M. 2019.
Cross-country evidence of Islamic portfolio diversification: Are there
opportunities in Saudi Arabia? Managerial Finance 45(1): 36-53.
Allal, J. & El Melhaoui, S. 2006. Optimal detection of exponential
component in autoregressive models. Journal of Time Series Analysis 27(6): 793-810.
Amiri, E. 2012. Forecasting GDP growth rate with nonlinear models. 1st
International Conference on Econometrics Methods and Applications. hlm.
25-27.
Ardia, D., Bluteau, K., Boudt, K. & Catania, L. 2018. Forecasting risk
with Markov-switching GARCH models: A large-scale performance study. International
Journal of Forecasting 34(4): 733-747.
Arellano, M.A. & Rodríguez, G. 2020. Empirical modeling of high-income
and emerging stock and Forex market return volatility using Markov-switching
GARCH models. North American Journal of Economics and Finance 52(October
2018): 101163.
Baragona, R., Battaglia, F. & Cucina, D. 2002. A note on estimating
autoregressive exponential models. Quaderni di Statistica 4: 1-18.
Bauwens, L., De Backer, B. & Dufays, A. 2014. A Bayesian method of
change-point estimation with recurrent regimes: Application to GARCH models. Journal
of Empirical Finance 29: 207-229.
Bollerslev, T. 1986. Generalized auroregressive conditional
hetroskedasticity. Journal of Econometrics 31: 307-327.
Box, G.E. & Jenkins, G.M. 1970. Time series analysis: Forecasting and
control. Holden-Day: Oakland, California.
Chan, K.S. & Tong, H. 1986. On estimating thresholds in autoregressive
models. Journal of Time Series Analysis 7(3): 179-190.
Christoffersen, P.F. 1998. Evaluating interval forecasts. International
Economic Review 39(4): 841-862.
Danielsson, J. 2011. Risk and Crises. https://voxeu.org/article/risk-and-crises-how-models-failed-and-are-failing.
Engle, R.F. 1982. Autoregressive conditional heteroscedacity with
estimates of variance of United Kingdom inflation. Econometrica 50(4):
987-1007.
Engle, R.F. & Manganelli, S. 2004. CAViaR: Conditional autoregressive
value at risk by regression quantiles. Journal of Business and Economic
Statistics 22(4): 367-381.
Gao, G., Ho, K.Y. & Shi, Y. 2020. Long memory or regime switching in
volatility? Evidence from high-frequency returns on the U.S. stock indices. Pacific
Basin Finance Journal 61(July 2018): 101059.
Ghosh, H., Gurung, B. & Gupta, P. 2014. Fitting EXPAR models through
the extended Kalman filter. Sankhya B 77(1): 27-44.
Granger, C.W. & Andersen, A.P. 1978. An Introduction to Bilinear
Time Series Models. Gottingen: Vandenhoeck and Ruprecht. p. 94.
Haas, M., Mittnik, S. & Paolella, M.S. 2004. A new approach to markov-switching
GARCH models. Journal of Financial Econometrics 2(4): 493-530.
Haggan, V. & Ozaki, T. 1981. Modelling nonlinear random vibrations
using an amplitude-dependent autoregressive time series model. Biometrika 68(1): 189-196.
Hamilton, J.D. 1994. Time Series Analysis. 1 ed. Princeton:
Princeton University Press.
Hansen, P.R. & Lunde, A. 2005. A forecast comparison of volatility
models: Does anything beat a GARCH(1,1)? Journal of Applied Econometrics 20(7): 873-889.
Herrera, A.M., Hu, L. & Pastor, D. 2018. Forecasting crude oil price
volatility. International Journal of Forecasting 34(4): 622-635.
Hossain, M.J. & Ismail, M.T. 2021. Is there any influence of other
cryptocurrencies on bitcoin? Asian Academy of Management Journal of
Accounting and Finance 17(1): 125-152.
Hull, J.C. 2018. Risk Management and Financial Institutions. 5 ed. John New Jersey: Wiley & Sons, Inc.
Ishizuka, K., Kato, H. & Nakatani, T. 2005. Speech signal analysis
with exponential autoregressive model. ICASSP, IEEE International Conference
on Acoustics, Speech and Signal Processing - Proceedings I. pp. 225-228.
Katsiampa, P. 2014. A new approach to modelling nonlinear time series:
Introducing the ExpAR-ARCH and ExpAR-GARCH models and applications. OpenAccess
Series in Informatics 37: 34-51.
Kupiec, P.H. 1995. Techniques for verifying the accuracy of risk
measurement models. The Journal of Derivatives 3(2): 73-84.
Lin, Y., Xiao, Y. & Li, F. 2020. Forecasting crude oil price
volatility via a HM-EGARCH model. Energy Economics 87: 104693.
Marcucci, J. 2005. Forecasting stock market volatility with
regime-switching GARCH models. Studies in Nonlinear Dynamics and
Econometrics 9(4): 159-213.
Meitz, M. & Saikkonen, P. 2008. Stability of nonlinear AR-GARCH models. Journal of Time Series Analysis 29(3): 453-475.
Merzougui, M. 2017. Estimation in periodic restricted EXPAR(1) models. Communications
in Statistics: Simulation and Computation 47(10): 2819-2828.
Merzougui, M., Dridi, H. & Chadli, A. 2016. Test for periodicity in
restrictive EXPAR models. Communications in Statistics - Theory and Methods 45(9): 2770-2783.
Mohammadi, H. & Su, L. 2010. International evidence on crude oil price
dynamics: Applications of ARIMA-GARCH models. Energy Economics 32(5):
1001-1008.
Moritz, S. & Bartz-Beielstein, T. 2017. imputeTS: Time series missing
value imputation in R. R Journal 9(1): 207-218.
Ozaki, T. 1980. Non-Linear time series models for non-linear random
vibrations. Journal of Applied Probability 17(1): 84-93.
Ozaki, T. & Oda, H. 1977. Non-Linear time series model identification
by Akaike’s information criterion. IFAC Proceedings Volumes 10(12):
83-91.
Rahim, M.A.I.A., Zahari, S.M. & Shariff, S.S.R. 2018. Variance
targeting estimator for GJR-GARCH under model’s misspecification. Sains
Malaysiana 47(9): 2195-2204.
Theiri, S. & Ati, A. 2020. Weak form of efficiency hypotheses:
Empirical modeling with box-Pierce, ADF and ARCH tests. International
Journal of Financial Research 11(5): 137-149.
Tong, H. 1990. Non-Linear Time Series: A Dynamical System Approach. Oxford University Press.
Tong, H. 1978. On a threshold model. In Pattern Recognition and Signal
Processing, edited by Chen, C.H. The Netherlands: Sijthoff & Noordhoff.
pp. 575-586.
Tong, H. & Lim, K.S. 1980. Threshold autoregression, limit cycles and
cyclical data. Journal of the Royal Statistical Society. Series B
(Methodological) 42(3): 245-292.
Xu, H., Wan, L., Ding, F., Alsaedi, A. & Hayat, T. 2019. Fitting the
exponential autoregressive model through recursive search. Journal of the
Franklin Institute 356(11): 5801-5818.
Zahid, M. & Iqbal, F. 2020. Modeling the volatility of
cryptocurrencies: An empirical application of stochastic volatility models. Sains
Malaysiana 49(3): 703-712.
*Corresponding
author; email: z_math_du@yahoo.com
|