Sains Malaysiana 51(7)(2022):
2295-2304
http://doi.org/10.17576/jsm-2022-5107-28
1
2
3
4
5
#54185
6
Diserahkan: 26/2/2022
7
Diterima: 17/5/2022
8
#54185
9
Diserahkan: 26/2/2022
10
Diterima: 17/5/2022
11
#54185
12
Diserahkan: 26/2/2022
13
Diterima: 17/5/2022
14
#54185
15
Diserahkan: 26/2/2022
16
Diterima: 17/5/2022
17
Kesan Masa Pendidihan dan Simulasi Pencernaan ke atas Protein dan Hidrolisat Protein yang Dihasilkan daripada Sarang Burung Walit Spesies Aerodramus fuciphagus
(Effects of Boiling Time and
Digestion Simulation on Protein and Protein Hydrolisate Produced from Swiftlet Nest Species Aerodramus fuciphagus)
NUR ‘ALIAH DAUD1, ABDUL SALAM BABJI1,
‘IZZATI KHALIDAH ZAINAL ABIDIN1, MASITAH MUSLIM1 &
SALMA MOHAMAD YUSOP1,2,*
1Jabatan Sains Makanan, Fakulti Sains dan Teknologi, Universiti Kebangsaan Malaysia, 43600 UKM Bangi,
Selangor Darul Ehsan, Malaysia
2Pusat Inovasi Teknologi Manis, Fakulti Sains dan Teknologi, Universiti Kebangsaan Malaysia, 43600 UKM Bangi,
Selangor Darul Ehsan, Malaysia
Received: 28 February 2022/Accepted:
14 April 2022
Abstrak
Sarang burung walit (SBW) dengan
kandungan manfaat kesihatan yang pelbagai dihasilkan daripada burung walit Aerodramus fuciphagus. Sarang tersebut dihasilkan
menggunakan air liur burung walit yang mengandungi bahan glikoprotein yang
tinggi. Kajian ini dijalankan untuk menghasilkan hidrolisat
protein SBW dan seterusnya menentukan kesan masa pendidihan (0 - 180 minit) dan
proses pencernaan ke atas sampel SBW dan hidrolisat protein SBW. Proses
hidrolisis berenzim telah dijalankan dengan menggunakan enzim alkalase untuk
menghasilkan hidrolisat protein SBW. Ujian pencernaan terhadap protein SBW dan
hidrolisat yang dihasilkan telah dijalankan menggunakan simulasi sistem
pencernaan manusia in vitro. Hasil kajian
menunjukkan dengan peningkatan masa pendidihan sehingga 180 minit, kandungan
peptida yang terhasil daripada pendidihan SBW mentah dan hidrolisat adalah
berbeza secara signifikan (p<0.05) dengan nilai kandungan peptida daripada
SBW mentah terdidih didapati lebih tinggi daripada hidrolisat SBW. Seterusnya, hasil daripada
pencernaan protein terhadap SBW dan hidrolisat SBW menunjukkan nilai kandungan
peptida yang berbeza secara signifikan (p<0.05) dengan darjah hidrolisis
protein SBW didapati paling tinggi (96.55%); diikuti dengan hidrolisat SBW 60
minit (88.69%), 120 minit (89.32%) dan 180 minit (89.81%) yang tidak berbeza
secara signifikan (p<0.05) antara sampel. Hasil kajian ini menunjukkan SBW
didegradasi secara aktif dalam masa 30 minit pendidihan berbanding hidrolisat
SBW. Perbezaan tersebut menjelaskan bahawa komponen protein pada hidrolisat SBW
telah banyak dicernakan oleh tindak balas hidrolisis berenzim dalam penyediaan
hidrolisat tersebut. Proses pencernaan in vitro pula menunjukkan bahawa
protein SBW dan hidrolisatnya adalah protein makanan yang boleh dicernakan
dengan baik oleh sistem pencernaan manusia.
Kata kunci: Hidrolisis berenzim; keterlarutan; pencernaan in
vitro; protein; sarang burung walit
Abstract
Edible
swiftlet nest (ESN) with a diverse content of health benefits is produced from
swiftlets of Aerodramus fuciphagus. The nest is produced using the swiftlet’s saliva which contains high
glycoprotein. This study was conducted to produce ESN protein hydrolysate and
further determine the effect of boiling time (0 - 180 minutes) and digestion
process on ESN samples and ESN protein hydrolysate. The enzymatic hydrolysis
process was carried out using alcalase enzymes to
produce ESN protein hydrolysate. Digestive tests on the ESN protein and
hydrolysates produced were carried out using the simulations of in vitro human digestive system. Results showed that with increasing boiling time up to
180 minutes, the peptide content produced from boiled raw ESN and ESN hydrolysate
was significantly different (p<0.05), with the ESN peptide
content from boiled raw ESN was observed to be higher than ESN
hydrolysate. Furthermore, protein digestion results for ESN and ESN
hydrolysate showed significantly different peptide content values (p<0.05),
with ESN having the highest degree of protein hydrolysis at 96.55%; followed by
ESN hydrolysate of 60 minutes (88.69%), 120 minutes (89.32%), and 180 minutes
(89.81%) which did not differ significantly among the sample. The findings of
this study showed that ESN has been actively degraded within 30 minutes of
boiling as compared to ESN hydrolysate. The difference explains that the
protein component of ESN hydrolysate has been extensively digested by the
enzymatic hydrolysis reaction during the preparation of the hydrolysate. The in
vitro digestion process showed that the ESN protein and its hydrolysate are
food proteins that can be well-digested by the human digestive system.
Keywords:
Enzymatic hydrolysis; in vitro digestion; protein; solubility; swiftlet
nest
REFERENCES
Arihara, K. 2006. Functional properties of bioactive peptides
derived from meat proteins. In Advanced Technologies for Meat
Processing. Boca Raton: CRC Press. hlm. 245-274.
Babji, A.S. & Daud, N.A. 2019. Physicochemical properties
of glycan within swiftlet's nest (Aerodramus
fuciphagus) as potential prebiotic. ACTA Scientific Medical
Sciences 3: 09-13.
Babji,
A.S., Syarmila, E.I., Daud, N.A., Muhammad, N.N., Dahlan, H.A., Norrakiah,
A.S., Ghassem, M., Najafian, L. & Yusop, S.M. 2018. Assessment on bioactive
components of hydrolysed edible bird nest. International Food Research
Journal 25: 1936-1941.
Berrill, A., Biddlecombe,
J. & Bracewell, D. 2011. Product quality during manufacture and supply. In Peptide and Protein Delivery, edited by
Van Der Walle, C. Massachusetts: Academic Press. hlm. 313-339.
Bloom, K.A., Huang, F.R., Bencharitiwong, R., Bardina, L.,
Ross, A., Sampson, H.A. & Anna, N. 2014. Effect of heat treatment on milk
and egg proteins allergenicity. Pediatric Allergy and Immunology 25:
740-746.
Bohn, T., Carriere, F., Day, L., Deglaire, A., Egger, L.,
Freitas, D., Golding, M., Le Feunteun, S., Macierzanka, A., Ménard, O.,
Miralles, B., Moscovici, A., Portmann, R., Recio, I., Rémond, D.,
Santé-Lhoutelier, V., Wooster, T.J., Lesmes, U., Mackie, A.R. & Dupont, D.
2018. Correlation between in vitro and in vivo data on food digestion. What can we predict with static in
vitro digestion models? Critical Reviews in Food Science and
Nutrition 58: 2239-2261.
18
models?
Bottari, B., Quartieri, A., Prandi, B., Raimondi, S.,
Leonardi, A., Rossi, M., Ulrici, A., Gatti, M., Sforza, S., Nocetti, M. &
Amaretti, A. 2017. Characterization of the peptide fraction from digested
Parmigiano Reggiano cheese and its effect on growth of lactobacilli and
bifidobacteria. International Journal of Food Microbiology 255:
32-41.
Boyd, C.E. 2015. pH, carbon dioxide, and alkalinity. In Water
Quality. Springer, Cham. hlm. 153-178.
Bradford, M.M. 1976. A rapid and sensitive method for the
quantitation of microgram quantities of protein utilizing the principle of
protein-dye binding. Analytical Biochemistry 72: 248-254.
Caballero, B., Trugo, L.C. & Finglas, P.M. 2003. Encyclopedia
of Food Sciences and Nutrition. Massachusetts: Academic Press.
Chua, K.H., Mohamed, I.N., Mohd Yunus, M.H., Shafinaz Md Nor,
N., Kamil, K., Ugusman, A. & Kumar, J. 2021. The anti-viral and
anti-inflammatory properties of Edible Bird’s nest in influenza and coronavirus
infections: From pre-clinical to potential clinical application. Frontiers
in Pharmacology 12: 633292.
Church, F.C., Swaisgood, H.E., Porter, D.H. & Catignani,
G.L. 1983. Spectrophotometric assay using o-phthaldialdehyde for determination
of proteolysis in milk and isolated milk proteins. Journal of Dairy
Science 66: 1219-1227.
Cui
et al. 2021
Daud, N.A., Mohamad Yusop, S., Babji, A.S., Lim, S.J.,
Sarbini, S.R. & Hui Yan, T. 2021. Edible bird’s nest: Physicochemical
properties, production, and application of bioactive extracts and glycopeptides. Food
Reviews International 37: 177-196.
Daud,
N.A., Sarbini, S.R., Babji, A.S., Mohamad Yusop, S. & Lim, S.J. 2019.
Characterization of edible swiftlet’s nest as a prebiotic ingredient using a
simulated colon model. Annals of Microbiology 69: 1235-1246.
Gil-Izquierdo, A., Zafrilla, P. & Tomás-Barberán, F.A.
2002. An in vitro method to simulate phenolic compound release from the
food matrix in the gastrointestinal tract. European Food Research and
Technology 214: 155-159.
Guo, C.T., Takahashi, T., Bukawa, W., Takahashi, N., Yagi, H.,
Kato, K., Kazuya, I.P., Miyamoto, D., Suzuki, T. & Suzuki, Y. 2006. Edible
bird's nest extract inhibits influenza virus infection. Antiviral
Research 70: 140-146.
Hur, S.J., Lim, B.O., Decker, E.A. & McClements, D.J.
2011. In vitro human digestion models for food applications. Food
Chemistry 125: 1-12.
Jamalluddin, N.H., Tukiran, N.A., Fadzillah, N.A. & Fathi,
S. 2019. Overview of edible bird's nests and their contemporary issues. Food
Control 104: 247-255.
Kathan, R.H. & Weeks, D.I. 1969. Structure studies of
collocalia mucoid: I. Carbohydrate and amino acid composition. Archives
of Biochemistry and Biophysics 134: 572-576.
López-Sánchez, J., Ponce-Alquicira, E., Pedroza-Islas, R., De
la Peña-Díaz, A. & Soriano-Santos, J. 2016. Effects of heat and pH
treatments and in vitro digestion on the biological activity of protein
hydrolysates of Amaranthus
hypochondriacus L. grain. Journal of Food Science and Technology 53:
4298-4307.
Minekus, M., Alminger, M., Alvito, P., Ballance, S., Bohn, T.,
Bourlieu, C., Carrière, F., Boutrou, R., Corredig, M., Dupont, D., Dufour, C.,
Egger, L., Golding, M., Karakaya, S., Kirkhus, B., Le Feunteun, S., Lesmes, U.,
Macierzanka, A., Mackie, A., Marze, S., McClements, D.J., Ménard, O., Recio,
I., Santos, C.N., Singh, R.P., Vegarud, G.E., Wickham, M.S.J., Weitschies, W.
& Brodkorb, A. 2014. A standardised static in vitro digestion method
suitable for food - An international consensus. Food and Function 5:
1113-1124.
19
consensus
Mohd
Khan, A., Etty Syarmila, I.K., Nurfatin, M.H., Farahniza, Z., Engku Hanisah,
E.U., Norhasidah, S., Masitah, E.H., Masturah, A.K., Nurul’Ain, M., Maaruf,
A.G. & Abdul Salam, B. 2014. Antioxidative property of ready-to-drink
products incorporated with enzymatically hydrolysed edible bird nest. Edible Bird Nest Industry Conference, 25-26
November, Marriot Hotel, Putrajaya, Malaysia.
Morais,
H.A., Silvestre, M.P.C., Silva, V.D.M., Silva, M.R., e Silva, A.C.S. &
Silveira, J.N. 2013. Correlation between the degree of hydrolysis and the
peptide profile of whey protein concentrate hydrolysates: Effect of the enzyme
type and reaction time. American Journal
of Food Technology 8(1): 1-16.
Norhayati,
M.K., Azman, O. & Nazaimoon, W.N. 2010. Preliminary study of the
nutritional content of Malaysian edible bird's nest. Malaysian Journal of Nutrition 16: 389-396.
Nurfatin, M.H., Syarmila, I.E., Daud, N.A., Zalifah, M.K.,
Babji, A.S. & Ayob, M.K. 2016. Effect of enzymatic hydrolysis on
Angiotensin converting enzyme (ACE) inhibitory activity in swiftlet
saliva. International Food Research Journal 23: 141-146.
Nurul
Nabilah Huda Mohamad Shukri, N.M. Nawi, Amin Mahir Abdullah & Norsida Man.
2018. Consumer’s perception on the quality of controversial contents in edible
bird’s nest products. Pertanika Journal of Scholarly Research Reviews 4(1): 1-9.
Nurul Nadia, M., Babji,
A.S., Ayub, M.K. & Nur‘Aliah, D. 2017. Effect of enzymatic hydrolysis on
antioxidant capacity of cave edible bird’s nests hydrolysate. International
Journal ChemTech Research 10(2): 1100-1107.
Ramachandran,
R., Babji, A.S. & Wong, P. 2017. Effect of heating on antioxidant activity
on edible bird nest. In 7th International
Seminar on Tropical Animal Production. Contribution of Livestock Production
on Food Sovereignity in Tropical Countries, September 12-14, Yogyakarta,
Indonesia. hlm. 380-386.
Rutherfurd,
S.M. 2019. Methodology for determining degree of hydrolysis of proteins in
hydrolysates: A review. Journal of AOAC
International 93: 1515-1522.
Smialowski, P.,
Martin-Galiano, A.J., Mikolajka, A., Girschick, T., Holak, T.A. & Frishman,
D. 2007. Protein solubility: Sequence based prediction and experimental
verification. Bioinformatics 23(19): 2536-2542.
Tang,
C.H., Wang, X.S. & Yang, X.Q. 2009. Enzymatic hydrolysis of hemp (Cannabis sativa L.) protein isolate by
various proteases and antioxidant properties of the resulting hydrolysates. Food Chemistry 114: 1484-1490.
Tapia, M.S., Alzamora, S.M. & Chirife, J. 2020. Effects of
water activity (aw) on
microbial stability as a hurdle in food preservation. In Water Activity
in Foods: Fundamentals and Applications. 2nd ed., edited by Barbosa-Cánovas, G.V., Fontana Jr., A.J.,
Schmidt, S.J. & Labuza, T.P. New Jersey: John Wiley & Sons. hlm.
323-355.
Tarafdar, A., Shahi, N.C., Singh, A. & Sirohi, R. 2018.
Artificial neural network modeling of water activity: A low energy approach to
freeze drying. Food and Bioprocess Technology 11: 164-171.
Tung,
C.H., Pan, J.Q., Chang, H.M. & Chou, S.S. 2008. Authentic determination of
bird's nests by Saccharides profile. Journal
of Food and Drug Analysis 16: 86-91.
Yida, Z.,
Imam, M.U. & Ismail, M. 2014. In vitro bioaccessibility and
antioxidant properties of edible bird’s nest following simulated human
gastro-intestinal digestion. BMC
Complementary and Alternative Medicine 14: 468.
Zhang,
C., Wang, Z., Li, Y., Yang, Y., Ju, X. & He, R. 2019. The preparation and
physiochemical characterization of rapeseed protein hydrolysate-chitosan
composite films. Food Chemistry 272: 694-701.
*Corresponding author; email: salma_my@ukm.edu.my
|