Sains Malaysiana 51(7)(2022): 2305-2314

http://doi.org/10.17576/jsm-2022-5107-29

Pengukuran Risiko menggunakan Rangkaian Bayesan: Aplikasi kepada Data Perlanggaran Kapal di Malaysia

(Risk Measurement using Bayesian Networks: Applications to Ship Collision Data in Malaysia)

 

ZAMIRA HASANAH ZAMZURI1,2,* & ZAIDI ISA1,2

 

1Jabatan Sains Matematik, Fakulti Sains dan Teknologi, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia

2Pusat Pemodelan dan Analisis Data, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia

 

Received: 13 March 2022/Accepted: 14 April 2022

 

Abstrak

Mengenal pasti faktor berbahaya yang mengancam keselamatan adalah penting agar tindakan dapat dirancang untuk menangani akibat jika berlakunya hazard tersebut. Proses pengecaman tersebut memerlukan pengukuran dan komputasi khusus dengan kebarangkalian dan keparahan kejadian tersebut diperlukan. Dalam kajian ini, pendekatan rangkaian Bayesan dilaksanakan untuk menilai, mengenal pasti dan kemudiannya memberi pangkat kepada faktor yang menyumbang kepada berlakunya perlanggaran kapal. Menerusi penggabungan maklumat daripada pandangan pakar dan data lepas, satu rangkaian Bayesan dibina untuk mentafsir kebarangkalian berlakunya perlanggaran diberi pemboleh ubah yang dicerap. Tiga jenis hazard dipertimbangkan dalam kajian ini iaitu teknikal, semula jadi dan kesilapan manusia. Peningkatan dalam kebarangkalian berlakunya perlanggaran kemudiannya dihitung dengan mensyaratkan kepada aras dalam pemboleh ubah dicerap. Tiga faktor pertama yang menyumbang kepada berlakunya perlanggaran kapal adalah kegagalan major dalam sistem komunikasi, kebolehan terjejas tinggi dan ketiadaan pemandu sebagai penasihat pelayaran. Penemuan ini membantu dalam menyerlahkan potensi major ditawarkan oleh rangkaian Bayesan bagi analisis risiko dan penghitungan kebarangkalian. Malahan, kajian ini menawarkan pemahaman yang lebih mendalam kepada pengamal dalam bidang ini untuk merancang atau membina strategi tindakan yang diperlukan bagi mengelakkan berlakunya perlanggaran. Maklumat ini juga penting untuk menilai keselamatan sesuatu kapal dalam usaha mengurangkan potensi suatu perlanggaran tersebut berlaku.

 

Kata kunci: Bayesan; perlanggaran kapal; rangkaian; risiko

 

Abstract

Identifying hazardous factors that threaten safety is important so that actions can be planned to address the consequences of the hazard. The identification process requires specific measurements and computations, for which the probability and severity of the event are required. In this study, the Bayesan network approach is implemented to evaluate, identify and then rank the factors that contribute to the occurrence of ship collisions. Through a combination of information from expert views and past data, a Bayesian network was constructed to interpret the probability of a collision given the observed variables. Three types of hazards are considered in this study namely technical, natural, and human error. The increase in the probability of a collision is then calculated by conditional to the level in the observed variable. The first three factors that contribute to the occurrence of shipwrecks are major failures in communication systems, high impaired abilities and the absence of a driver as a navigational advisor. These findings help in highlighting the major potentials offered by the Bayesian network for risk analysis and probability calculations. In fact, this study offers a deeper understanding to practitioners in this field to plan or build the necessary action strategies to avoid the occurrence of collisions. This information is also important in assessing the safety of a ship in an effort to reduce the potential for a collision to occur.

 

Keywords: Bayesian; network; risk; ship collision

 

REFERENCES

Badida, P., Balasubramaniam, Y. & Jayaprakash, J. 2019. Risk evaluation of oil and natural gas pipelines due to natural hazards using fuzzy fault tree analysis. J. Nat. Gas Sci. Eng. 66: 284-292.

Chai, T., Weng, J. & Xiong, D. 2017. Development of a quantitative risk assessment model for ship collisions in fairways. Safety Science 91: 71-83.

Champ, P.A. & Brenkert‐Smith, H. 2016. Is seeing believing? Perceptions of wildfire risk over time. Risk Analysis 36(4): 816-830.

Chen, S., Chai, L., Xu, K., Wei, Y., Rong, Z. & Wan, W. 2019. Estimation of the occurrence probability of extreme geomagnetic storms by applying extreme value theory to Aa index. JGR Space Physics 124: 9943-9952.

Chen, P., Huang, Y., Mou, J. & van Gelder, P.H.A.J.M. 2019. Probabilistic risk analysis for ship-ship collision: State-of-the-art. Safety Science 117: 108-122.

Constantinou, A.C., Fenton, N.E. & Neil, M. 2016. Integrating expert knowledge with data in Bayesian networks: Preserving data-driven expectations when the expert variables remain unobserved. Expert System with Applications 56: 197-208.

Dharmarathne, G., Hanea, A. & Robinson, A.P. 2021. Improving the computation of Brier scores for evaluating expert-elicited judgement. Frontiers in Applied Mathematics and Statistics. https://doi.org/10.3389/fams.2021.669546

Fowler, T.G. & Sørgård, E. 2000. Modeling ship transportation risk. Risk Analysis 20(2): 225-244.

Friedman, N. & Koller, D. 2003. Being Bayesian about network structure. A Bayesian approach to structure discovery in Bayesian networks. Machine Learning 50: 95-125.

Gusmao, A.P.H., Silva, M.M., Poleto, T., Silve, L.C. & Costa, A.P.C.S. 2018. Cybersecurity risk analysis model using fault tree analysis and fuzzy decision theory. International Journal of Information Management 43: 248-260.

Hänninen, M. & Kujala, K. 2012. Influences of variables on ship collision probability in a Bayesian belief network model. Reliability Engineering 102: 27-40.

Haron, S.J. 2015. Analysis of marine incidents in Malaysia. Master Thesis, Universiti Teknologi Malaysia (UTM) (Tidak diterbitkan).

Karahalios, H. 2014. The contribution of risk management in ship management: The case of ship collision. Safety Science 63: 104-114. https://doi.org/10.1016/j.ssci.2013.11.004.

Khakzad, N., Khan, F. & Amyotte, P. 2011. Safety analysis in process facilities: Comparison of fault tree and Bayesian network approaches. Reliability Engineering & System Safety 96(8): 925-932.

Korb, K. & Nicholson, A. 2003. Bayesian Artificial Intelligence. Boca Raton: CRC Press.

Luxhøj, J.T. 2015. A conceptual Object-Oriented Bayesian Network (OOBN) for modeling aircraft carrier-based UAS safety risk. Journal of Risk Research 18(10): 1230-1258.

Macduff, T. 1974. The probability of vessel collisions. Ocean Industry 9(9): 144-148.

Makajic-Nikolica, D., Petrovica, N., Cirovica, M., Vujosevica, M. & Presburger-Ulnikovic, V. 2016. The model of risk assessment of greywater discharges from the Danube River ships. Journal of Risk Research 19(4): 496-514.

Marcot, B.G. 2012. Metrics for evaluating performance and uncertainty of Bayesian network models. Ecological Modelling 230: 50-62.

Martins, M.R. & Maturana, M.C. 2009. The application of the Bayesian networks in the human reliability analysis. Proceedings of the ASME 2009 International Mechanical Engineering Congress and Exposition, Lake Buena Vista, FL, 13-19 November. New York: IEEE.

Neapolitan, R.E. & Jiang, X. 2007. Probabilistic Methods for Financial and Marketing Informatics. San Francisco: Morgan Kaufmann Publishers.

Otto, S., Pedersen, P.T., Samuelides, M. & Sames, P.C. 2002. Elements of risk analysis for collision and grounding of a RoRo passenger ferry. Marine Structures 15(4): 461-474.

Razak, R.A. & Ismail, N. 2019. Dependence modeling and portfolio risk estimation using GARCH-Copula approach. Sains Malaysiana 48(7): 1547-1555.

Todinov, M. 2019. Mechanisms for improving reliability and reducing risk by stochastic and deterministic separation. Journal of Risk Research 22(4): 448-474.

Weber, P., Medina-Oliva, G., Simon, C. & Iung, B. 2012. Overview on Bayesian networks applications for dependability, risk analysis and maintenance areas. Engineering Applications of Artificial Intelligence 25(4): 671-682.

Xin, Z. & Wen, L. 2017. A Bayesian network approach to causation analysis of road accidents using Netica. Journal of Advanced Transportationhttps://doi.org/10.1155/2017/2525481

Yazdi, M., Nikfar, F. & Nasrabadi, M. 2017. Failure probability analysis by employing fuzzy fault tree analysis. International Journal of System Assurance Engineering and Management 8(2): 1177-1193.

Zaman, M.B., Kobayashi, E., Wakabayashi, N., Khanfir, S., Pitana, T. & Maimun, A. 2014. Fuzzy FMEA model for risk evaluation of ship collisions in the Malacca Strait: Based on AIS data. Journal of Simulation 8(1): 91-104.

Zamzuri, Z. & Gwee, J.H. 2020. Comparing and forecasting using stochastic mortality models: A Monte Carlo simulation. Sains Malaysiana 49(8): 2013-2022.

Zhang, J., Teixiera, A.P., Guandes Soares, C., Yan, X. & Liu, K. 2016. Maritime transportation risk assessment of Tianjin Port using Bayesian belief network. Risk Analysis 36(6): 1171-1187.

Zhang, J. 2017. Life-Oriented Behavioral Research for Urban Policy. Japan: Springer.

 

*Corresponding author; email: zamira@ukm.edu.my

 

   

previous