Sains Malaysiana 51(8)(2022):
2425-2434
http://doi.org/10.17576/jsm-2022-5108-07
Benefits of Coriandrum
sativum L. Seed Extract in Maintaining Immunocompetent Cell Homeostasis
(Kebaikan Ekstrak Biji Coriandrum sativum L. dalam Mengekalkan Homeostasis Sel Imunokompeten)
SRI RAHAYU1,*, MUHAIMIN RIFA’I1,
DAHLIATUL QOSIMAH2, SRI WIDYARTI1, NOVIANA DWI LESTARI1,
YOGA DWI JATMIKO1, WIRA EKA PUTRA3,4 & HIDEO TSUBOI5
1Biology
Department, Faculty of Mathematics and Natural Sciences, Brawijaya University, Jl. Veteran Malang 65145, East Java, Indonesia
2Laboratory of
Microbiology and Immunology, Faculty of Veterinary Medicine, Brawijaya University, Jl.
Veteran Malang 65145, East Java, Indonesia
3Department
of Biology, Faculty of Mathematics and Natural Sciences, Universitas Negeri Malang, Malang 65145, Indonesia
4Department
of Biotechnology, Faculty of Mathematics and Natural Sciences, Universitas Negeri Malang, Malang 65145, Indonesia
5Department
of Immunology, Nagoya University Graduate School of Medicine, 65 Tsurumai-Cho, Showa-Ku, Nagoya 466-8550, Japan
Received: 26
October 2020/Accepted: 16 February 2022
Abstract
Diabetes
mellitus (DM) is a metabolic disease followed by an increase in blood glucose
and impaired metabolism of proteins, lipids and carbohydrates. In general,
these conditions are caused by impaired insulin secretion and/or defects of
insulin receptors. As yet, there is no effective drug capable of treating DM.
Manifestations of DM worsen when accompanied by severe inflammation. Therefore,
the avoiding strategy and management of inflammation in DM are the primary
courses of action in preventing further damage. In this study, we had evidence
that Coriandrum sativum L. extract (CSE) could be used as an alternative to relieve symptoms
in DM mice model. Previously, CSE has been shown to be able to inhibit the
synthesis of the pro-inflammatory molecule interleukin (IL)-6 by both B220 and
CD11b cells. Here, we showed that CSE prevents over-activation of CD4 and CD8 T
lymphocytes. The predominance of T cells expressing CD62L on both CD4 and CD8 T
cells after administration of CSE indicated that there were obstacles to
activation. CSE also suppressed excessive CD25 expression, causing CD25
expression in CD4 T cells to return to normal levels. Thus, this study showed
the therapeutic activity of CSE in DM mice model by suppressing the
pro-inflammatory cytokines, modulate the activation of naïve T cells, and
maintain the population of CD4+CD25+ cells.
Keywords: Coriandrum sativum L.;
diabetes mellitus; interleukin-6; pro-inflammatory
Abstrak
Diabetes
mellitus (DM) adalah penyakit metabolik yang diikuti oleh peningkatan glukosa darah dan gangguan metabolisme protein, lipid dan karbohidrat. Secara umumnya, keadaan ini disebabkan oleh rembesan insulin yang terjejas dan/atau kecacatan reseptor insulin. Setakat ini, tiada dadah berkesan yang mampu merawat DM. Manifestasi DM bertambah teruk apabila disertai dengan keradangan yang teruk. Oleh itu, strategi mengelakkan dan pengurusan keradangan dalam DM adalah tindakan utama dalam mencegah kerosakan selanjutnya. Dalam kajian ini,
kami mempunyai bukti bahawa ekstrak Coriandrum
sativum L. (CSE) boleh digunakan sebagai alternatif untuk melegakan gejala dalam model tikus DM. Sebelum ini, CSE telah ditunjukkan dapat merencat sintesis molekul pro-radang interleukin
(IL)-6 oleh kedua-dua sel B220 dan CD11b. Di sini, kami menunjukkan bahawa CSE menghalang pengaktifan berlebihan limfosit CD4 dan CD8 T. Penguasaan sel T yang mengekspreskan CD62L pada kedua-dua sel T
CD4 dan CD8 selepas perlakuan CSE menunjukkan bahawa terdapat halangan untuk pengaktifan. CSE juga menindas ekspresi CD25 yang berlebihan menyebabkan ekspresi CD25 dalam sel T CD4 kembali ke tahap normal. Oleh itu, kajian ini menunjukkan aktiviti terapeutik CSE dalam model tikus DM dengan menekan sitokin pro-radang, memodulasi pengaktifan sel T naif dan mengekalkan populasi sel CD4+CD25+.
Kata kunci: Coriandrum sativum L.; diabetes mellitus; interleukin-6; pro-radang
REFERENCES
Abuye, C., Tsegaye, A., West, C.E., Versloot,
P., Sanders, E.J. & Wolday D. 2005. Determinants
of CD4 counts among HIV-negative Ethiopians: Role of body mass index, gender,
cigarette smoking, khat (Catha Edulis)
chewing, and possibly altitude? Journal
of Clinical Immunology 25(2): 127-133.
Ahrends, T., Spanjaard, A., Pilzecker, B., Bąbała, N., Bovens, A.,
Xiao, Y., Jacobs, H. & Borst, J. 2017. CD4+ T cell help confers
a cytotoxic T cell effector program including coinhibitory receptor
downregulation and increased tissue invasiveness. Immunity 47(5): 848-861.
Aissaoui, A., Zizi, S., Israili, Z.H. & Lyoussi, B. 2011. Hypoglycemic and hypolipidemic effects of Coriandrum sativum L. in Meriones shawi rats. Journal
of Ethnopharmacology 137(1): 652-661.
Arkatkar, T., Du, S.W., Jacobs, H.M., Dam, E.M., Hou, B. & Buckner, J.H. 2017. B cell-derived IL-6
initiates spontaneous germinal center formation during systemic autoimmunity. Journal of Experimental Medicine 214(11):
3207-3217.
Bahadoran, Z., Mirmiran, P. & Azizi, F. 2013. Dietary polyphenols as potential nutraceuticals in the management of
diabetes: A review. Journal of Diabetes and Metabolic
Disorders 12(1):
1-9.
Barros,
S.P., Suruki, R., Loewy, Z.G., Beck, J.D. & Offenbacher, S. 2013. A cohort study of the impact of tooth
loss and periodontal disease on respiratory events among COPD subjects:
Modulatory role of systemic biomarkers of inflammation. PLoS ONE 8(8): 1-8.
Clee, S.M. & Attie, A.D. 2007. The genetic landscape of type 2 diabetes
in mice. Endocrine Reviews 28(1):
48-83.
Das, S., Chaware, S., Narkar, N., Tilak, A.V., Raveendran, S. & Rane, P.
2019a. Antidiabetic activity of Coriandrum
sativum in Streptozotocin-induced diabetic rats. International Journal of Basic and Clinical Pharmacology 8(5):
925-929.
Das, S., Rajadnya, V., Kothari, R., Tilak, A.V., Raveendran, S.
& Deshpande, T. 2019b. Hypolipidemic activity of Coriandrum sativum in diabetic dyslipidemic rats. International
Journal of Basic and Clinical Pharmacology 8(6): 1393-1397.
Deepa, B.
& Anuradha, C.V. 2011. Antioxidant potential of Coriandrum sativum L.
seed extract. Indian Journal of
Experimental Biology 49(1): 30-38.
Dhanapakiam, P., Joseph, J.M., Ramaswamy, V.K., Moorthi,
M. & Kumar, A.S. 2008. The cholesterol-lowering property of coriander seeds
(Coriandrum sativum): Mechanism of
action. Journal of Environmental Biology 29(1): 53-56.
Esposito,
K., Nappo, F., Marfella,
R., Giugliano, G., Giugliano,
F. & Ciotola, M. 2002. Inflammatory cytokine
concentrations are acutely increased by hyperglycemia in humans: The role of
oxidative stress. Circulation 106(16): 2067-2072.
Frederico,
E.H.F.F., Cardoso, A.L.B.D., Guimarães, C.A.S.,
Neves, R.F., Sá-Caputo, D.C. & Moreira-Marconi, E. 2016. Possible benefits
of the Coriandrum sativum in the
management of diabetes in animal model: A systematic review. Herbal Medicine 2(14): 1-7.
Furman, B.L.
2015. Streptozotocin‐induced diabetic models in mice and rats. Current Protocols in Pharmacology 47(1):
1-20.
Galkina, E., Florey, O., Zarbock, A., Smith, B.R., Preece, G. & Lawrence, M.B. 2007. T lymphocyte rolling and
recruitment into peripheral lymph nodes is regulated by a saturable density of
L-selectin (CD62L). European Journal of Immunology 37(5): 1243-1253.
Hackett, E. & Jacques, N. 2009. Type 2 diabetes pathophysiology and
clinical features. Clinical Pharmacist 1(1): 475-478.
Hajiaghaalipour, F., Khalilpourfarshbafi, M. & Arya, A. 2015. Modulation of
glucose transporter protein by dietary flavonoids in type 2 diabetes. International Journal of Biological Sciences 11(5): 508-524.
Harford,
K.A., Reynolds, C.M., McGillicuddy, F.C. & Roche,
H.M. 2011. Fats, inflammation and insulin resistance: Insights to the role of
macrophage and T-cell accumulation in adipose tissue. Proceedings of the Nutrition Society 70(4): 408-417.
Hossain, M.K., Dayem, A.A., Han, J., Yin, Y.,
Kim, K. & Saha, S.K. 2016. Molecular mechanisms
of the anti-obesity and anti-diabetic properties of flavonoids. International Journal of Molecular Sciences 17(4):
1-32.
Hundhausen, C., Roth, A., Whalen,
E., Chen, J., Schneider, A. & Long, S.A. 2016. Enhanced T cell responses to
IL-6 in type 1 diabetes are associated with early clinical disease and
increased IL-6 receptor expression. Science
Translational Medicine 8(356): 1-26.
Hunter,
C.A. & Jones, S.A. 2015. IL-6 as a keystone cytokine in health and disease. Nature Immunology 16(5): 448-457.
Kaku, H., Holodick, N.E., Tumang, J.R. & Rothstein, T.L. 2017. CD25+ B-1a cells express Aicda. Frontiers
in Immunology 8(672): 1-6.
Kaku, K. 2010. Pathophysiology of type 2 diabetes and its treatment
policy. Japan Medical Association Journal 53(1): 41-46.
Naquvi, K.J., Ali, M. & Ahamad, J.
2011. Antidiabetic activity of aqueous extract of Coriandrum sativum fruits in streptozotocin-induced rats. International
Journal of Pharmacy and Pharmaceutical Sciences 4(1): 239-241.
Nasri, H. & Rafieian, K.M. 2014. Metformin:
Current knowledge. Journal of Research in Medical Sciences 19(7): 658-664.
Prachayasittikul, V., Prachayasittikul, S. & Ruchirawat,
S. 2018. Coriander (Coriandrum sativum): A promising functional food
toward the well-being. Food Research
International 105(1): 305-323.
Qiao, Y.C., Shen, J., He,
L., Hong, X.Z., Tian, F., Pan, Y.H., Liang, L., Zhang, X.X. & Zhao, H.L.
2016. Changes of regulatory T Cells and of proinflammatory and
immunosuppressive cytokines in patients with type 2 diabetes mellitus: A
systematic review and meta-analysis. Journal
of Diabetes Research 2016: 3694957.
Quan, Y.J.,
Huang, A., Ye, M., Xu, M., Zhuang, B., Zhang, P., Yu, B. & Min, Z.J. 2015.
Efficacy of laparoscopic mini gastric bypass for obesity and type 2 diabetes
mellitus: A systematic review and meta-analysis. Gastroenterology Research and Practice 2015: 152852.
Rabe, H.,
Malmquist, M., Barkman, C., Östman,
S., Gjertsson & Saalman, R. 2019. Distinct
patterns of naive, activated and memory T and B cells in the blood of patients
with ulcerative colitis or Crohn's disease. Clinical
and Experimental Immunology 197(1): 111-129.
Rajeshwari, U., Iyer, S. & Bondada, A. 2011. Comparison of aniseeds and coriander
seeds for antidiabetic, hypolipidemic and antioxidant activities. Spatula DD 1(1): 9-16.
Rehman, K., Akash, M.S.H., Liaqat, A., Kamal, S., Qadir,
M.I. & Rasul, A. 2017. Role of interleukin-6 in development of insulin
resistance and type 2 diabetes mellitus. Critical
Reviews in Eukaryotic Gene Expression 27(3): 229-236.
Rifa’i, M., Mulya, D.W., Noviana, D.L., Aris, W., Mansur, I. & Hideo, T. 2018. Flow cytometric
analysis of pro-inflammatory cytokine production in hyperglycemic mouse model. Recent Patents on Food, Nutrition and Agriculture 9(2): 119-126.
*Corresponding author; email: srahayu@ub.ac.id
|