Sains Malaysiana 51(8)(2022): 2461-2472

http://doi.org/10.17576/jsm-2022-5108-10

 

 The Effects of Monosaccharides on The Physico-Electrochemical Properties of Chitosan Based Solid Polymer Electrolytes (SPEs)

(Kesan Monosakarida terhadap Sifat Fiziko-Elektrokimia bagi Elektrolit Polimer Pepejal Berasaskan Kitosan (SPEs))

 

NURUL IFFAH ISMAIL1, SAIYIDAH NAFISAH SAIDIN1, NUR HANI RA’IL1, AZIZAN AHMAD1,2 & NADHRATUN NAIIM MOBARAK1,2*

 

1Department of Chemical Sciences, Faculty of Science & Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia

2Polymer Research Center (PORCE), Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia

 

Received: 22 October 2021/Accepted: 20 January 2022

 

ABSTRACT

Monosaccharides have shown their potential as plasticizers in solid polymer electrolytes (SPEs) due to the presence of numerous hydroxyl (OH) functioning groups. Glucose and fructose were used in this study. The effect of monosaccharides on physico-electrochemical properties of solid polymer electrolytes based on chitosan have been studied. Chitosan-based polymer electrolytes have been successfully plasticized using a solution-casting technique at six different weight percentages (0-30 wt.%). The result shows that 15 wt.% was the highest ionic conductivity achieved by both chitosan-glucose (CG) and chitosan-fructose (CF) systems. Lithium transference number (TLi+) analysis showed that CF had a high number of lithium ions compared to the CG system, with values of 0.26 and 0.14, respectively. In addition, Linear Sweep Voltammetry (LSV) analysis shows that the electrochemical stability for the CG system was 2.98 V compared to 3.20 V for the CF system. This discovery demonstrates that monosaccharides have the potential to be used as plasticizers due to the presence of several oxygen atoms in the structure, which act as a coordination site for cation interaction and can also improve the ion mobility and ionic conductivity of chitosan-based solid polymer electrolytes.

 

Keywords: Chitosan; ionic conductivity; monosaccharides; plasticizer; polymer electrolyte

 

ABSTRAK

Monosakarida menunjukkan potensi sebagai bahan pemplastik dalam aplikasi elektrolit polimer pepejal disebabkan oleh kehadiran kumpulan berfungsi hidroksil (OH) yang banyak. Kehadiran kumpulan hidroksil yang mempunyai pasangan elektron terpencil ini mampu bertindak sebagai tapak aktif untuk berinteraksi dengan kation dan dalam kajian ini, glukosa dan fruktosa telah dipilih. Kesan monosakarida sebagai bahan pemplastik berasaskan kitosan terhadap sifat fiziko-elektrokimia telah dikaji. Elektrolit polimer pepejal berasaskan kitosan telah berjaya dihasilkan dengan menggunakan teknik pengacuan larutan dengan menggunakan peratusan monosakarida yang berbeza (0-30 bt. %).  Hasil kajian mendapati nilai kekonduksian tertinggi dicapai pada 15 bt. % bagi sistem kitosan-glukosa (CG) dan kitosan-fruktosa (CF). Analisis nombor pengangkutan litium menunjukkan sistem CF mempunyai bilangan ion litium yang tinggi berbanding sistem CG dengan nilai masing-masing 0.26 dan 0.14. Selain itu, analisis LSV menunjukkan elektrolit polimer pepejal berasaskan kitosan ini memberikan kestabilan elektrokimia sehingga 2.98 V bagi sistem CG dan 3.20 V bagi sistem CF. Keputusan kajian yang diperoleh ini menunjukkan monosakarida berpotensi untuk digunakan sebagai bahan pemplastik kerana kehadiran beberapa atom oksigen dalam struktur monosakarida yang bertindak sebagai tapak aktif untuk berinteraksi dengan kation yang seterusnya dapat meningkatkan mobiliti ion dan kekonduksian ion elektrolit polimer pepejal berasaskan kitosan.

 

Kata kunci: Bahan pemplastik; elektrolit polimer; kekonduksian ion; kitosan; monosakrida

 

References

Ali, A.M.M., Yahya, M.Z.A., Mustaffa, M., Ahmad, A.H. & Subban, R.H.Y. 2005. Electrical properties of plasticized chitosan-lithium imide with oleic acid-based polymer electrolytes for lithium rechargeable batteries. Ionics 11: 460-463.

Arof, A.K., Osman, Z., Morni, N.M., Kamarulzaman, N., Ibrahim, Z.A. & Muhamad, M.R. 2001. Chitosan-based electrolyte for secondary lithium cells. Journal of Materials Science 36: 791-793.

Asnawi, AA.S.F.M., Aziz, S.B., Nofal, M.M., Yusof, Y.M., Brevik, I., Hamsan, M.H., Bra, M.A., Abdulwahid, R.T. & Kasir, M.F.Z. 2020. Metal complex as a novel approach to enhance the amorphous phase and improve the EDLC performance of plasticized proton conducting chitosan-based polymer electrolyte. Membranes 10(6): 132.

Azli, A.A., Manan, N.S.A. & Kadir, M.F.Z. 2015. Conductivity and dielectric studies of lithium trifluoromethanesulfonate doped polyethylene oxide-graphene oxide blends based electrolytes. Advances in Materials Science and Engineering 2015: 1-10.

Aziz, S.B., Hamsan, M.H., Abdullah, R.M. & Kadir, M.F.Z.A. 2019. Promising polymer belend electrolytes based on chitosan:methyl cellulose for EDLC application with high specific capacitance and energy density. Molecules 24(13): 2503.

Aziz, S.B., Woo, T.J., Kadir, M.F.Z. & Ahmed, H.M. 2018. A conceptual review on polymer electrolytes and ion transport models. Journal of Science: Advanced Materials and Devices 3(1): 1-17.

Chitra, R., Sathya, P., Selvasekarapandlan, S. & Meyvel, S. 2019. Synthesis and characterization of iota-carrageenan biopolymer electrolyte with lithium perchlorate and succinonitrile (plasticizer). Polymer Bulletin 77: 1555-1579.

Ding, C., Fu, X., Li, H., Yang, J., Lan, J.L., Yu, Y., Zhong, W.H. & Yang, X. 2019. An ultrarobust composite gel electrolytes stabilizing ion deposition for long-life lithium metal batteries. Advances of Functional Materials 29(43): 1904547.

Edelman, R., Kusner, I., Kisiliak, R., Srebnik, S. & Livney, Y.D. 2015. Sugar stereochemistry effects on water structure and on protein stability: The templating concept. Food Hydrocolloids 48: 27-37.

Fauzi, I., Arcana, I.M. & Wahyuningrum, D. 2014. Synthesis and characterization of solid polymer electrolyte from N-succinyl chitosan and lithium perchlorate. Advanced Materials Research 896: 58-61.

Fuchs, K. & Kaatze, U. 2001. Molecular dynamics of carbohydrate aqueous solutions, dielectric relaxation as a function of glucose and fructose concentration. Journal of Physical Chemistry B 105(10): 2036-2042.

Francis, K.A., Liew, C.W., Ramesh, S., Ramesh, K. & Ramesh, S. 2016. Effect of ionic liquid 1-butyl-3-methylimidazolium bromide on ionic conductivity of poly (ethyl methacrylate) based polymer electrolytes. Materials Express 6(3): 252-258.

Ghosh, A., Wang, C. & Kofinas, P. 2010. Block copolymer solid battery electrolyte with high Li-ion transference number. Journal of the Electrochemical Society 157(7): A846-A849.

Hadi, J.M., Aziz, S., Mustafa, M.S. & Hamsan, M.H. 2020. Electrochemical impedence study of proton conducting polymer electrolytes based on PVC doped with thiocyanate and plasticized with glycerol. International Journal of Electrochemical Science 15: 4671-4683.

Hambali, D., Zainuddin, Z., Supa’at, I. & Osman, Z. 2016. Studies of ion transport and electrochemical properties of plasticized composite polymer electrolytes. Sains Malaysiana45(11): 1697-1705.

Khiar, A.S.A., Puteh, R. & Arof, A.K. 2006. Conductivity studies of a chitosan-based polymer electrolytes. Physica B 373(1): 23-27.

Kisiliak, R. & Livney, Y.D. 2017. Hydration-mediated effects of saccharide stereochemistry on protein heat stability. In Stereochemistry and Global Connectivity: The Legacy of Ernest L. Eliel. Washington: American Chemical Society 1(9): 171-195.

Liao, X., Raghavan, V.G.S., Meda, V. & Yaylayan, V.A. 2001. Dielectric properties of supersaturated α-D-glucose aqueous solution at 2450 MHz. Journal of Microwave Power and Electromagnetic Energy 36(3): 131-138.

Mellor, D. & Naumovski, N. 2016. Kitchen Science: Beyond the Sweetness of Sugar. https://theconversation.com/kitchen-science-beyond-the-sweetness-of-sugar-60796. Accessed on 30 March 2021.

Mishra, K., Garg, A., Sharma, R., Gautam, R. & Pundir, S.S. 2019. Effect of blending of PMMA on PVdF-HFP + NaCF3SO3-EC-PC gel polymer electrolyte. Materials Today: Proceedings 12: 621-627.

Mobarak, N.N., Jumaah, F.N., Ghani, M.A., Abdullah, M.P. & Ahmad, A. 2015. Carboxymethyl carrageenan based biopolymer electrolytes. Electrochimica Acta 175: 224-231.

Moeini, A., Germann, N., Malinconico, M. & Santagata, G. 2021. Formulation of secondaary compounds as additives of biopolymer-based food packaging: A  review. Trends in Food Science & Technology 114: 342-354.

Naiwi, T.S.R.T., Aung, M.M., Ahmad, A., Rayung, M., Su’ait, M.S., Yusof, N.A. & Khine, Z.W.L. 2018. Enhancement of plastizing effect on bio-based polyurethane acrylate solid polymer electrolyte and its properties. Polymers 10(1142): 1-18.

Navaratnam, S., Ramesh, K., Ramesh, S., Sanusi, A., Basirun, W.J. & Arof, A.K. 2015. Transport mechanism studies of chitosan electrolyte systems. Electrochimica Acta 175(1): 68-73.

Nur Hani, R. 2018. Mengkaji kesan kepekatan garam iodida terhadap sifat elektrokimia larutan elektrolit cecair berasaskan monosakarida dan disakarida. PhD Thesis, Universiti Kebangsaan Malaysia (Unpublished).

Osman, Z., Mohd Ghazali, M.I., Othman, L. & Md Isa, K.B. 2012. AC ionic conductivity and DC polarization method of lithium-ion transport in PMMA-LiBF4 gel polymer electrolytes. Results in Physics 2: 1-4.

Osman, Z., Md Isa, K.B., Othman, L. & Kamarulzaman, N. 2011. Studies of ionic conductivity and dielectric behaviour in polyacrylonitrile based solid polymer electrolytes. Defect and Diffusion Forum 312: 116-121.

Pawlicka, A., Tavares, F.C., Dőrr, D.S., Cholant, C.M., Ely, F., Santos, M.J.L. & Avellaneda, C.O. 2019. Dielectric behaviour and FTIR studies for xanthan gum-based solid polymer electrolytes. Electrochimica Acta 305: 232-239.

Rahman, M.Y.A., Ahmad, A., Lee, T.K., Farina, Y. & Dahlan, H.M. 2011. Effect of ethylene carbonate (EC) plasticizer on poly (vinyl chloride)-liquid 50% epoxidised natural rubber (LENR50) based polymer electrolyte. Materials Sciences and Application 2(7): 818-826.

Ralph, P.S. & Ernesh, C.V. 1957. The dielectric constants of ethylene carbonate and of solutions of ethylene carbonate in water, methanol, benzene, and propylene carbonate. The Journal of Physical Chemistry 62(1): 127-128.

Ramly, K., Isa, M.I.N. & Khiar, A.S.A. 2011. Conductivity and dielectric behavior studies of starch/PEO + x wt-% NH4NO3 polymer electrolyte. Material Research Innovations 15(2): 82-85.

Raphael, E., Avellaneda, C.O., Aegerter, M.A., Silva, M.M. & Pawlicka, A. 2012. Agar-based gel electrolyte for electrochromic device application. Molecular Crystals and Liquid Crystals 554(1): 264-272.

Rozali, M.L.H., Samsudin, A.S. & Isa, M.I.N. 2012. Ion conducting mechanism of carboxy methylcellulose doped with ionic dopant salicylic acid based solid polymer electrolytes. International Journal of Applied Science and Technology 2(4): 113-121.

Saadiah, M.A., Nagao, Y. & Samsudin, A.S. 2021. Enhancement of protonation (H+) with incorporation of flexible ethylene carbonate in CMC-PVA-30wt% NH4NO3 film. International Journal of Hydrogen Energy 46(33): 17231-17245.

Sahli, N., Ramly, N.N., Yahya, M.Z.A. & Ali, A.M.M. 2017. Physical and conductivity studies of plasticised methyl cellulose-lithium triflate based polymer electrolyte. Pertanika Journal Science & Technology 25(S): 183-190.

Salman, Y.A.K., Abdullah, O.G., Hanna, R.R. & Aziz, S.B. 2018. Conductivity and electrical properties of chitosan-methylcellulose blend biopolymer electrolyte incorporated with lithium tetrafluoroborate. International Journal of Electrochemical Science 13(4): 3185-3199.

Samsudin, A.S. & Isa, M.I.N. 2014. Study of the ionic conduction mechanism based on carboxymethyl cellulose biopolymer electrolytes. Journal of the Korean Physical Society 65(9): 1441-1447.

Sampathkumar, L., Christopher Selvin, P., Selvasekarapandian, S., Perumal, P., Chitra, R. & Muthukrishnan, M. 2019. Synthesis and characterization of biopolymer electrolyte based on tamarind seed polysaccharide, lithium perchlorate and ethylene carbonate for electrochemical applications. Ionics 25(3): 1-16.

Seng, L.K. 2018. Preparation and characterization of solid polymer electrolyte based on carboxymethyl chitosan, ammonia nitrate and ethylene carbonate. The Eurasia Proceedings of Science, Technology, Engineering & Mathematics (EPSTEM) 2: 10-16.

Sudaryanto, Yulianti, E. & Patimatuzzohrah. 2016. Structure and properties of solid polymer electrolyte based on chitosan and ZrO2 nanoparticle for lithium ion battery. AIP Conference Proceedings 1710: 020003-1-020003-9.

Shukur, M.F.A. 2015. Characterization of ion conducting solid biopolymer electrolytes based on starch-chitosan blend and application in electrochemical devices. PhD Thesis, Institute of Graduate Studies, Universiti Malaya (Unpublished).

Shukur, M.F., Hamsan, M.H. & Kadir, M.F.Z. 2019. Investigation of plasticized ionic conductor based on chitosan and ammonium bromide for EDLC application. Materials Today: Proceedings 17(2): 490-498.

Shukur, M.F., Ithnin, R. & Kadir, M.F.Z. 2014. Protonic transport analysis of starch-chitosan blend-based electrolytes and application in electrochemical device. Molecular Crystals and Liquid Crystals 603(1): 52-65.

Taib, N.U. & Idris, N.H. 2014. Plastic crystal-solid biopolymer electrolytes for rechargeable lithium batteries. Journal of Membrane Science 468: 149-154.

Tan, C.Y., Farhana, N.K., Saidi, N.M., Ramesh, S. & Ramesh, K. 2018. Conductivity, dielectric studies and structural properties of P(VA-co-PE) and its application in dye sensitized solar cell. Organic Electronics 56: 116-124.

Vieira, M.G.A., Silva, M.A., Santos, L.O. & Beppu, M.M. 2011. Natural-based plasticizer and biopolymer films: A review. European Polymer Journal 47(3): 254-263.

Wang, R., Wang, Q. & Li, L. 2003. Evaporation behaviour of water and its plasticizing effect in modified poly (vinyl alcohol) systems. Polymer international 52(12): 1820-1826. 

Yahya, M.Z.A. & Arof, A.K. 2003. Effect of oleic acid plasticizer on chitosan-lithium acetate solid polymer electrolytes. European Polymer Journal 39(5): 897-902.

Yahya, M.Z.A., Ali, A.M.M., Mohammat, M.F., Hanafiah, M.A.K.M., Mustaffa, M., Ibrahim, S.C., Darus, Z.M. & Harun, M.K. 2006. Ionic conduction model in salted chitosan membranes plasticized with fatty acid. Journal of Applied Science 6(6): 1287-1291.

Yang, D., Li, X., Wu, N. & Tian, W. 2015. The effect of moisture content on the electrochemical performance of LiNi1/3CO1/3Mn1/3O2/graphite battery. Electrochimica Acta 188: 611-618.

Young-Tae, K. & Eugene, S.S. 2002. The effect of plasticizers on transport and electrochemical properties of PEO-based electrolytes for lithium rechargeable batteries. Solid State Ionics 149(1-2): 29-37.

Zhao, J., Chen, Y., Liu, Y. & Zhuo, K. 2013. Conductivity in MnSO4-saccharide-water solutions at 298.15 K. Fluid Phase Equilibria 352: 28-33.

 

*Corresponding author; email: nadhratunnaiim@ukm.edu.my

 

 

 

previous