Sains Malaysiana 51(8)(2022):
2461-2472
http://doi.org/10.17576/jsm-2022-5108-10
The
Effects of Monosaccharides on The Physico-Electrochemical
Properties of Chitosan Based Solid Polymer Electrolytes (SPEs)
(Kesan Monosakarida terhadap Sifat Fiziko-Elektrokimia bagi Elektrolit Polimer Pepejal Berasaskan Kitosan (SPEs))
NURUL IFFAH ISMAIL1,
SAIYIDAH NAFISAH SAIDIN1, NUR HANI RA’IL1, AZIZAN AHMAD1,2 & NADHRATUN NAIIM MOBARAK1,2*
1Department
of Chemical Sciences, Faculty of Science & Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi,
Selangor Darul Ehsan, Malaysia
2Polymer
Research Center (PORCE), Universiti Kebangsaan Malaysia, 43600 UKM Bangi,
Selangor Darul Ehsan, Malaysia
Received: 22 October
2021/Accepted: 20 January 2022
ABSTRACT
Monosaccharides have
shown their potential as plasticizers in solid polymer electrolytes (SPEs) due
to the presence of numerous hydroxyl (OH) functioning groups. Glucose and
fructose were used in this study. The effect of monosaccharides on physico-electrochemical properties of solid polymer
electrolytes based on chitosan have been studied. Chitosan-based polymer
electrolytes have been successfully plasticized using a solution-casting
technique at six different weight percentages (0-30 wt.%). The result shows
that 15 wt.% was the highest ionic conductivity achieved by both
chitosan-glucose (CG) and chitosan-fructose (CF) systems. Lithium transference
number (TLi+) analysis showed that CF had a high number of
lithium ions compared to the CG system, with values of 0.26 and 0.14,
respectively. In addition, Linear Sweep Voltammetry (LSV) analysis shows that
the electrochemical stability for the CG system was 2.98 V compared to 3.20 V
for the CF system. This discovery demonstrates that monosaccharides have the
potential to be used as plasticizers due to the presence of several oxygen
atoms in the structure, which act as a coordination site for cation interaction
and can also improve the ion mobility and ionic conductivity of chitosan-based
solid polymer electrolytes.
Keywords: Chitosan; ionic conductivity; monosaccharides; plasticizer;
polymer electrolyte
ABSTRAK
Monosakarida menunjukkan potensi sebagai bahan pemplastik dalam aplikasi elektrolit polimer pepejal disebabkan oleh kehadiran kumpulan berfungsi hidroksil (OH) yang banyak. Kehadiran kumpulan hidroksil yang mempunyai pasangan elektron terpencil ini mampu bertindak sebagai tapak aktif untuk berinteraksi dengan kation dan dalam kajian ini, glukosa dan fruktosa telah dipilih. Kesan monosakarida sebagai bahan pemplastik berasaskan kitosan terhadap sifat fiziko-elektrokimia telah dikaji. Elektrolit polimer pepejal berasaskan kitosan telah berjaya dihasilkan dengan menggunakan teknik pengacuan larutan dengan menggunakan peratusan monosakarida yang berbeza (0-30 bt. %). Hasil kajian mendapati nilai kekonduksian tertinggi dicapai pada 15 bt. % bagi sistem kitosan-glukosa (CG) dan kitosan-fruktosa (CF). Analisis nombor pengangkutan litium menunjukkan sistem CF mempunyai bilangan ion litium yang tinggi berbanding sistem CG dengan nilai masing-masing 0.26 dan 0.14. Selain itu, analisis LSV menunjukkan elektrolit polimer pepejal berasaskan kitosan ini memberikan kestabilan elektrokimia sehingga 2.98 V bagi sistem CG dan 3.20 V bagi sistem CF. Keputusan kajian yang diperoleh ini menunjukkan monosakarida berpotensi untuk digunakan sebagai bahan pemplastik kerana kehadiran beberapa atom oksigen dalam struktur monosakarida yang bertindak sebagai tapak aktif untuk berinteraksi dengan kation yang seterusnya dapat meningkatkan mobiliti ion dan kekonduksian ion elektrolit polimer pepejal berasaskan kitosan.
Kata kunci: Bahan pemplastik; elektrolit polimer; kekonduksian ion; kitosan; monosakrida
References
Ali,
A.M.M., Yahya, M.Z.A., Mustaffa, M., Ahmad, A.H.
& Subban, R.H.Y. 2005. Electrical properties of
plasticized chitosan-lithium imide with oleic acid-based polymer electrolytes
for lithium rechargeable batteries. Ionics 11: 460-463.
Arof, A.K., Osman, Z., Morni,
N.M., Kamarulzaman, N., Ibrahim, Z.A. & Muhamad, M.R. 2001. Chitosan-based
electrolyte for secondary lithium cells. Journal of Materials Science 36:
791-793.
Asnawi,
AA.S.F.M., Aziz, S.B., Nofal, M.M., Yusof, Y.M., Brevik, I., Hamsan, M.H., Bra,
M.A., Abdulwahid, R.T. & Kasir, M.F.Z. 2020. Metal complex as a novel approach
to enhance the amorphous phase and improve the EDLC performance of plasticized
proton conducting chitosan-based polymer electrolyte. Membranes 10(6):
132.
Azli, A.A.,
Manan, N.S.A. & Kadir, M.F.Z. 2015. Conductivity and dielectric studies of
lithium trifluoromethanesulfonate doped polyethylene oxide-graphene oxide
blends based electrolytes. Advances in Materials Science and Engineering 2015: 1-10.
Aziz, S.B.,
Hamsan, M.H., Abdullah, R.M. & Kadir, M.F.Z.A. 2019. Promising polymer
belend electrolytes based on chitosan:methyl cellulose for EDLC application
with high specific capacitance and energy density. Molecules 24(13):
2503.
Aziz, S.B.,
Woo, T.J., Kadir, M.F.Z. & Ahmed, H.M. 2018. A
conceptual review on polymer electrolytes and ion transport models. Journal of Science: Advanced Materials and
Devices 3(1): 1-17.
Chitra, R., Sathya, P., Selvasekarapandlan, S. & Meyvel,
S. 2019. Synthesis and characterization of iota-carrageenan biopolymer
electrolyte with lithium perchlorate and succinonitrile (plasticizer). Polymer Bulletin 77: 1555-1579.
Ding, C., Fu, X., Li, H., Yang, J.,
Lan, J.L., Yu, Y., Zhong, W.H. & Yang, X. 2019. An ultrarobust composite gel electrolytes stabilizing ion deposition for long-life lithium
metal batteries. Advances of Functional Materials 29(43): 1904547.
Edelman, R., Kusner,
I., Kisiliak, R., Srebnik,
S. & Livney, Y.D. 2015. Sugar stereochemistry
effects on water structure and on protein stability: The templating
concept. Food Hydrocolloids 48: 27-37.
Fauzi,
I., Arcana, I.M. & Wahyuningrum, D. 2014.
Synthesis and characterization of solid polymer electrolyte from N-succinyl
chitosan and lithium perchlorate. Advanced Materials Research 896:
58-61.
Fuchs, K. & Kaatze,
U. 2001. Molecular dynamics of carbohydrate aqueous solutions, dielectric
relaxation as a function of glucose and fructose concentration. Journal of
Physical Chemistry B 105(10): 2036-2042.
Francis, K.A., Liew, C.W., Ramesh,
S., Ramesh, K. & Ramesh, S. 2016. Effect of ionic liquid
1-butyl-3-methylimidazolium bromide on ionic conductivity of poly (ethyl
methacrylate) based polymer electrolytes. Materials
Express 6(3): 252-258.
Ghosh, A., Wang, C. & Kofinas, P. 2010. Block copolymer solid battery electrolyte
with high Li-ion transference number. Journal
of the Electrochemical Society 157(7): A846-A849.
Hadi,
J.M., Aziz, S., Mustafa, M.S. & Hamsan, M.H.
2020. Electrochemical impedence study of proton
conducting polymer electrolytes based on PVC doped with thiocyanate and
plasticized with glycerol. International Journal of Electrochemical Science 15:
4671-4683.
Hambali,
D., Zainuddin, Z., Supa’at,
I. & Osman, Z. 2016. Studies of ion transport and electrochemical properties
of plasticized composite polymer electrolytes. Sains Malaysiana45(11): 1697-1705.
Khiar,
A.S.A., Puteh, R. & Arof,
A.K. 2006. Conductivity studies of a chitosan-based polymer electrolytes. Physica B 373(1): 23-27.
Kisiliak,
R. & Livney, Y.D. 2017. Hydration-mediated
effects of saccharide stereochemistry on protein heat stability. In Stereochemistry
and Global Connectivity: The Legacy of Ernest L. Eliel. Washington: American Chemical Society 1(9):
171-195.
Liao, X., Raghavan, V.G.S., Meda, V. & Yaylayan, V.A.
2001. Dielectric properties of supersaturated α-D-glucose aqueous solution
at 2450 MHz. Journal of Microwave Power and
Electromagnetic Energy 36(3): 131-138.
Mellor, D. & Naumovski, N. 2016. Kitchen Science: Beyond the
Sweetness of Sugar. https://theconversation.com/kitchen-science-beyond-the-sweetness-of-sugar-60796. Accessed on 30 March 2021.
Mishra, K.,
Garg, A., Sharma, R., Gautam, R. & Pundir, S.S. 2019. Effect of blending of
PMMA on PVdF-HFP + NaCF3SO3-EC-PC gel polymer electrolyte. Materials Today:
Proceedings 12: 621-627.
Mobarak, N.N.,
Jumaah, F.N., Ghani, M.A., Abdullah, M.P. & Ahmad, A. 2015. Carboxymethyl
carrageenan based biopolymer electrolytes. Electrochimica Acta 175:
224-231.
Moeini, A.,
Germann, N., Malinconico, M. & Santagata, G. 2021. Formulation of
secondaary compounds as additives of biopolymer-based food packaging: A review. Trends in Food Science &
Technology 114: 342-354.
Naiwi,
T.S.R.T., Aung, M.M., Ahmad, A., Rayung, M., Su’ait, M.S., Yusof, N.A. &
Khine, Z.W.L. 2018. Enhancement of plastizing effect on bio-based polyurethane
acrylate solid polymer electrolyte and its properties. Polymers 10(1142): 1-18.
Navaratnam,
S., Ramesh, K., Ramesh, S., Sanusi, A., Basirun, W.J.
& Arof, A.K. 2015. Transport mechanism studies of
chitosan electrolyte systems. Electrochimica Acta 175(1): 68-73.
Nur Hani, R. 2018. Mengkaji kesan kepekatan garam iodida terhadap sifat elektrokimia larutan elektrolit cecair berasaskan monosakarida dan disakarida. PhD Thesis, Universiti Kebangsaan Malaysia (Unpublished).
Osman, Z., Mohd Ghazali, M.I., Othman, L. & Md Isa, K.B. 2012. AC ionic conductivity and DC
polarization method of lithium-ion transport in PMMA-LiBF4 gel polymer
electrolytes. Results in Physics 2:
1-4.
Osman, Z., Md Isa, K.B., Othman, L.
& Kamarulzaman, N. 2011. Studies of ionic
conductivity and dielectric behaviour in polyacrylonitrile based solid polymer
electrolytes. Defect and Diffusion Forum 312: 116-121.
Pawlicka,
A., Tavares, F.C., Dőrr, D.S., Cholant, C.M., Ely, F., Santos, M.J.L. & Avellaneda,
C.O. 2019. Dielectric behaviour and FTIR studies for xanthan gum-based solid
polymer electrolytes. Electrochimica Acta 305: 232-239.
Rahman, M.Y.A., Ahmad, A., Lee,
T.K., Farina, Y. & Dahlan, H.M. 2011. Effect of
ethylene carbonate (EC) plasticizer on poly (vinyl chloride)-liquid 50% epoxidised natural rubber (LENR50) based polymer
electrolyte. Materials Sciences and
Application 2(7): 818-826.
Ralph, P.S. & Ernesh, C.V. 1957. The dielectric constants of ethylene
carbonate and of solutions of ethylene carbonate in water, methanol, benzene,
and propylene carbonate. The Journal of Physical Chemistry 62(1):
127-128.
Ramly,
K., Isa, M.I.N. & Khiar, A.S.A. 2011.
Conductivity and dielectric behavior studies of
starch/PEO + x wt-% NH4NO3 polymer electrolyte. Material Research Innovations 15(2):
82-85.
Raphael, E., Avellaneda, C.O., Aegerter, M.A., Silva, M.M. & Pawlicka,
A. 2012. Agar-based gel electrolyte for electrochromic device application. Molecular Crystals and Liquid Crystals 554(1): 264-272.
Rozali,
M.L.H., Samsudin, A.S. & Isa, M.I.N. 2012. Ion
conducting mechanism of carboxy methylcellulose doped with ionic dopant
salicylic acid based solid polymer electrolytes. International Journal of Applied Science and Technology 2(4):
113-121.
Saadiah,
M.A., Nagao, Y. & Samsudin, A.S. 2021.
Enhancement of protonation (H+) with incorporation of flexible ethylene
carbonate in CMC-PVA-30wt% NH4NO3 film. International Journal of Hydrogen
Energy 46(33): 17231-17245.
Sahli,
N., Ramly, N.N., Yahya, M.Z.A. & Ali, A.M.M.
2017. Physical and conductivity studies of plasticised methyl cellulose-lithium
triflate based polymer electrolyte. Pertanika Journal Science & Technology 25(S): 183-190.
Salman, Y.A.K., Abdullah, O.G.,
Hanna, R.R. & Aziz, S.B. 2018. Conductivity and electrical properties of
chitosan-methylcellulose blend biopolymer electrolyte incorporated with lithium
tetrafluoroborate. International Journal
of Electrochemical Science 13(4): 3185-3199.
Samsudin,
A.S. & Isa, M.I.N. 2014. Study of the ionic conduction mechanism based on
carboxymethyl cellulose biopolymer electrolytes. Journal of the Korean
Physical Society 65(9): 1441-1447.
Sampathkumar,
L., Christopher Selvin, P., Selvasekarapandian, S.,
Perumal, P., Chitra, R. & Muthukrishnan, M. 2019.
Synthesis and characterization of biopolymer electrolyte based on tamarind seed
polysaccharide, lithium perchlorate and ethylene carbonate for electrochemical
applications. Ionics 25(3): 1-16.
Seng, L.K.
2018. Preparation and characterization of solid polymer electrolyte based on
carboxymethyl chitosan, ammonia nitrate and ethylene carbonate. The Eurasia
Proceedings of Science, Technology, Engineering & Mathematics (EPSTEM) 2:
10-16.
Sudaryanto, Yulianti, E. & Patimatuzzohrah.
2016. Structure and properties of solid polymer electrolyte based on chitosan
and ZrO2 nanoparticle for lithium ion battery. AIP
Conference Proceedings 1710: 020003-1-020003-9.
Shukur,
M.F.A. 2015. Characterization of ion conducting solid biopolymer electrolytes
based on starch-chitosan blend and application in electrochemical devices. PhD
Thesis, Institute of Graduate Studies, Universiti Malaya (Unpublished).
Shukur,
M.F., Hamsan, M.H. & Kadir, M.F.Z. 2019.
Investigation of plasticized ionic conductor based on chitosan and ammonium
bromide for EDLC application. Materials Today: Proceedings 17(2):
490-498.
Shukur,
M.F., Ithnin, R. & Kadir, M.F.Z. 2014. Protonic
transport analysis of starch-chitosan blend-based electrolytes and application
in electrochemical device. Molecular Crystals and Liquid Crystals 603(1):
52-65.
Taib, N.U.
& Idris, N.H. 2014. Plastic crystal-solid biopolymer electrolytes for
rechargeable lithium batteries. Journal of Membrane Science 468:
149-154.
Tan, C.Y., Farhana, N.K., Saidi, N.M., Ramesh, S. & Ramesh, K. 2018.
Conductivity, dielectric studies and structural properties of P(VA-co-PE) and
its application in dye sensitized solar cell. Organic Electronics 56:
116-124.
Vieira, M.G.A., Silva, M.A.,
Santos, L.O. & Beppu, M.M. 2011. Natural-based
plasticizer and biopolymer films: A review. European Polymer Journal 47(3): 254-263.
Wang, R., Wang, Q. & Li, L.
2003. Evaporation behaviour of water and its plasticizing effect in modified
poly (vinyl alcohol) systems. Polymer international 52(12):
1820-1826.
Yahya, M.Z.A. & Arof, A.K. 2003. Effect of oleic acid plasticizer on
chitosan-lithium acetate solid polymer electrolytes. European Polymer
Journal 39(5): 897-902.
Yahya, M.Z.A.,
Ali, A.M.M., Mohammat, M.F., Hanafiah, M.A.K.M., Mustaffa, M., Ibrahim, S.C.,
Darus, Z.M. & Harun, M.K. 2006. Ionic
conduction model in salted chitosan membranes plasticized with fatty acid. Journal
of Applied Science 6(6): 1287-1291.
Yang, D., Li,
X., Wu, N. & Tian, W. 2015. The effect of moisture content on the
electrochemical performance of LiNi1/3CO1/3Mn1/3O2/graphite
battery. Electrochimica Acta 188: 611-618.
Young-Tae, K. & Eugene, S.S.
2002. The effect of plasticizers on transport and electrochemical properties of
PEO-based electrolytes for lithium rechargeable batteries. Solid State
Ionics 149(1-2): 29-37.
Zhao, J.,
Chen, Y., Liu, Y. & Zhuo, K. 2013. Conductivity in MnSO4-saccharide-water
solutions at 298.15 K. Fluid Phase Equilibria 352: 28-33.
*Corresponding author; email:
nadhratunnaiim@ukm.edu.my
|