Sains Malaysiana 51(8)(2022):
2473-2493
http://doi.org/10.17576/jsm-2022-5108-11
Mesoporous Silica Nanoparticle-Templated Ionic
Liquid as a Drug Carrier for Ibuprofen and Quercetin
(Nanozarah Silika Mesoliang Templat Cecair Ion sebagai Pembawa Ubat untuk Ibuprofen dan Kuersetin)
NAJIHAH RAMELI1,
KHAIRULAZHAR JUMBRI1,2,*, ANITA RAMLI1,
ROSWANIRA ABDUL WAHAB3, HASLINA AHMAD4 & MOHD
BASYARUDDIN ABDUL RAHMAN4
1Department of Fundamental and
Applied Sciences, Universiti Teknologi Petronas, 32610 Seri Iskandar, Perak Darul Ridzuan, Malaysia
2Centre of Research in Ionic
Liquids (CORIL), Universiti Teknologi PETRONAS (UTP), Bandar Seri Iskandar, Perak Darul Ridzuan, Malaysia
3Department of Chemistry, Faculty
of Science, Universiti Teknologi Malaysia (UTM), 81310 Skudai, Johor Bahru, Johor Darul Takzim, Malaysia
4Department of Chemistry, Faculty
of Science, Universiti Putra Malaysia, 43400 UPM
Serdang, Selangor Darul Ehsan, Malaysia
Received: 13 December
2021/Accepted: 4 March 2022
Abstract
In this study, a series of mesoporous
silica nanoparticle (MSN) was successfully synthesized using different ionic
liquids (ILs) as a template. Five ILs and a surfactant with different alkyl
side chains and types of anion namely 1-dodecyl-3-methylimidazolium
iodide ([C12mim][I]), 3-diethylamino propanol vanillate (DV), 2-butylamino ethanol salicylate (BS), 3-diethylamino propanol salicylate
(DS), 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)
imide ([bmim][NTf2]) and
hexadecyltrimethylammonium bromide (CTAB) were used. All MSNs produced have
broad peaks, indicating mesoporous silica in amorphous form as observed by XRD
while the morphology of MSN showed the agglomeration of particles and due to
parallel arrangement pores size in both for FESEM and HRTEM. The MSNs are
amorphous and displayed Type IV BET isotherm with H2 hysteresis loops which is a typical isotherm
for mesoporous materials and the highest surface area obtained was 638 m2/g.
The study on uptake and release of ibuprofen and quercetin were carried out,
where ibuprofen showed higher drug uptake compared to quercetin due to better
interaction of MSN with drug molecules. The drug release conducted at 48 h
indicates 33.1% of ibuprofen and 38.4% quercetin released. It can be indicated
that MSN-BS is the best for drug loading and release. Drugs release kinetics study
indicated that the release process follows the Korsmeyer peppes model. The best efficiency of drug loading for
MSN-BS/IBU and MSN-BS/QUE was at 48 h and 25 °C with 250 rpm
stirring rate for both IBU and QUE, respectively.
Keywords: Drug
delivery; ibuprofen; ionic liquids; mesoporous silica; quercetin
ABSTRAK
Dalam kajian ini, satu siri nanozarah silika mesoliang (MSN) telah berjaya disintesis daripada cecair ion (IL) yang berbeza sebagai templat. Lima jenis IL dan surfaktan dengan rantai sisi alkil dan jenis anion yang berbeza iaitu 1-dodesil-3-metilimidaolium iodida ([C12mim] [I]), 3-dietilamino propanol vanilla (DV),
2-butilamino etanol salsilat (BS), 3-diethilamino propanol salisilat (DS),
1-butil-3-metilimidaolium bis (triflorometilsulfanol) imida ([bmim] [NTf2]) dan heksadesiltrimetilammonium bromida (CTAB) telah digunakan. Semua MSN yang dihasilkan mempunyai puncak yang luas, hal ini menunjukkan kehadiran silika dalam bentuk amorfus seperti yang diperhatikan oleh XRD, sementara morfologi MSN mendedahkan bahawa penggumpalan zarah adalah disebabkan oleh saiz nanozarah MSN itu sendiri dan saiz liang yang mempunyai susunan selari telah disahkan oleh FESEM dan HRTEM. MSN ini adalah amorfus dan menunjukkan BET isoterma jenis IV dengan gelung histeresis H2 iaitu jenis isoterma yang sering dikaitkan dengan bahan mesoliang dan luas permukaan tertinggi dicapai adalah 638 m2/g. Kajian melibatkan penyerapan dan pelepasan ibuprofen dan kuersetin telah dijalankan, yang mana menunjukkan ibuprofen mempunyai penyerapan ubat yang lebih tinggi berbanding kuersetin disebabkan oleh interaksi yang lebih baik antara MSN dengan molekul ubat. Pelepasan ubat telah dilaksanakan selama 48 jam menunjukkan hanya 33.1% ibuprofen
dan 38.4% kuersetin berjaya dilepaskan. Hasil kajian ini menunjukkan bahawa MSN BS merupakan pembawa ubat yang baik untuk ibuprofen. Kajian kinetik berkenaan pelepasan ubat mendedahkan proses pelepasan adalah mematuhi model Korsemeyerpoppes. Kecekapan pemuatan ubat terbaik bagi MSN-BS/IBU dan MSN-BS/QUE adalah pada 48 jam dan 25 °C dengan kadar pengadukan 250 rpm untuk IBU dan QUE.
Kata kunci: Cecair ion;
ibuprofen; kuersetin; penghantaran dadah; silika mesoporus
REFERENCES
Ab Wab, H.A., Abdul Razak,
K. & Zakaria, N.D. 2014. Properties of amorphous silica nanoparticles
colloid drug delivery system synthesized using the micelle formation method. Journal
of Nanoparticle Research 16(2): 2256.
Ahmad, N.A., Jumbri, K.,
Ramli, A., Ahmad, H., Rahman, M.B.A. & Wahab, R.A. 2020. Design and
molecular modelling of phenolic-based protic ionic liquids. Journal of
Molecular Liquids 308: 113062.
Ahmad, H., Zaharudin,
N.S., Majid, N.N.A., Jumbri, K. & Rahman, M.B.A. 2019a. Synthesis and
characterization of new choline-based ionic liquids and their antimicrobial
properties. Journal of Advanced Research in Fluid Mechanics and Thermal
Sciences 54(2): 124-132.
Ahmad, N.A., Jumbri, K.,
Ramli, A., Ghani, N. & Ahmad, H. 2019b. Salicylate-based protic ionic
liquids as a potential antioxidant. Malaysian Journal of Analytical Sciences 23(3): 383-389.
Beltrán-Osuna, Á.A., Gómez
Ribelles, J.L. & Perilla, J.E. 2017. A study of some fundamental
physicochemical variables on the morphology of mesoporous silica nanoparticles
MCM-41 type. Journal of Nanoparticle Research 19(12): 381.
Bharti, C., Nagaich, U.,
Pal, A.K. & Gulati, N. 2015. Mesoporous silica nanoparticles in target drug
delivery system: A review. International Journal of Pharmaceutical
Investigation 5(3): 124-133.
Cammarata, L., Kazarian,
S.G., Salter, P.A. & Welton, T. 2001. Molecular states of water in room
temperature ionic liquids. Physical Chemistry Chemical Physics 3(23):
5192-5200.
Carcouët, C.C.M.C., Van De
Put, M.W.P., Mezari, B., Magusin, P.C.M.M., Laven, J., Bomans, P.H.H.,
Friedrich, H., Esteves, A.C.C., Sommerdijk, N.A.J.M., Van Benthem, R.A.T.M.
& De With, G. 2014. Nucleation and growth of monodisperse silica
nanoparticles. Nano Letters 14(3): 1433-1438.
Costa, J.A.S., De Jesus,
R.A., Santos, D.O., Neris, J.B., Figueiredo, R.T. & Paranhos, C.M. 2021.
Synthesis, functionalization, and environmental application of silica-based
mesoporous materials of the M41S and SBA-n families: A review. Journal of
Environmental Chemical Engineering 9(3): 105259.
Gao, L., Sun, J., Zhang,
L., Wang, J. & Ren, B. 2012. Influence of different structured channels of
mesoporous silicate on the controlled ibuprofen delivery. Materials Chemistry Physics 135: 786-797.
Halamova, D. &
Zelenak, V. 2012. NSAID naproxen in mesoporous matrix MCM-41: Drug uptake and
release properties. Journal of Inclusion Phenomena and Macrocyclic Chemistry 72: 15-23.
Hashemikia, S.,
Hemmatinejad, N., Ahmadi, E. & Montazer, M. 2015. Optimization of tetracycline
hydrochloride adsorption on amino modified SBA-15 using response surface
methodology. Journal of Colloid and Interface Science 443: 105-114.
Heikkila, T., Salonen, J.,
Tuura, J., Hamdy, M.S., Mul, G., Kumar, N., Salmi, T., Yu, D., Laitinen, L., Kaukonen,
A.M., Hirvonen, J. & Lehto, V.P. 2007. Mesoporous silica material TUD-1 as
a drug delivery system. International Journal of Pharmaceutics 331:
133-138.
Hong, R.Y., Li, J.H.,
Chen, L.L., Liu, D.Q., Li, H.Z., Zheng, Y. & Ding, J. 2009. Synthesis, surface
modification and photocatalytic property of ZnO nanoparticles. Powder
Technology 189(3): 426-432.
Irvine, J., Afrose, A.
& Islam, N. 2018. Formulation and delivery strategies of ibuprofen:
Challenges and opportunities. Drug Development and Industrial Pharmacy 44(2): 173-183.
Kamarudin, N.H.N., Jalil,
A.A., Triwahyono, S., Salleh, N.F.M., Karim, A.H., Mukti, R.R., Hameed, B.H.
& Ahmad, A. 2013. Role of 3-aminopropyltriethoxysilane in the preparation
of mesoporous silica nanoparticles for ibuprofen delivery: Effect on
physicochemical properties. Microporous and Mesoporous Materials 180:
235-241.
Li, J., Wang, H., Li, H.,
Xu, L., Guo, Y., Lu, F., Pan, W. & Li, S. 2016. Mutual interaction between
guest drug molecules and host nanoporous silica xerogel studied using central
composite design. International Journal of Pharmaceutics 498(1-2):
32-39.
Li, Y. & Yang, L.
2015. Driving forces for drug loading in drug carriers. Journal of
Microencapsulation 32(3): 255-272.
Li, Z., Yu, L., Dong, B.,
Geng, F., Zheng, L. & Li, G. 2008. Synthesis and characterization of
mesoporous silica templated by amphiphilic RTILs. Journal Dispersion Science and Technology 29: 1066-1071.
Lv, X., Zhang, L., Xing,
F. & Lin, H. 2016. Controlled synthesis of monodispersed mesoporous silica
nanoparticles: Particle size tuning and formation mechanism investigation. Microporous
and Mesoporous Materials 225: 238-244.
Maleki, A., Kettiger, H.,
Schoubben, A., Rosenholm, J.M., Ambrogi, V. & Hamidi, M. 2017. Mesoporous
silica materials: From physico-chemical properties to enhanced dissolution of
poorly water-soluble drugs. Journal of Controlled Release 262: 329-347.
Mccarthy, C.A., Ahern,
R.J., Dontireddy, R., Ryan, K.B. & Crean, A.M. 2016. Mesoporous silica
formulation strategies for drug dissolution enhancement: A review. Expert
Opinion on Drug Delivery 13(1): 93-108.
Mohamed Isa, E.D., Mahmud,
I.S., Ahmad, H. & Abdul Rahman, M.B. 2019. Dependence of mesoporous silica
properties on its template. Ceramics International 45(9): 12149-12153.
Mohamed Isa, E.D., Abdul
Rahman, M.B. & Ahmad, H. 2018. Monodispersed mesoporous silica nanospheres
based on pyridinium ionic liquids. Journal of Porous Materials 25(5):
1439-1446.
Narayan, R., Nayak, U.Y.,
Raichur, A.M. & Garg, S. 2018. Mesoporous silica nanoparticles: A
comprehensive review on synthesis and recent advances. Pharmaceutics 10(3): 118.
Postnova, I.V., Jen, L.
& Shchipunov, Y.A. 2013. Synthesis of monolithic mesoporous silica with a
regular structure (SBA-15) and macropores in neutral aqueous solution at room
temperature. Colloid Journal 75: 231-233.
Quevedo, G.P., Celis,
A.C., Ordonez, C.V. & Martinez, M.L.O. 2018. SBA-type mesoporous materials
with cylindrical and spherical structures for the controlled loading and
release of ibuprofen. Journal of Sol-Gel Science and Technology 85(2):
486-494.
Rameli, N., Jumbri, K.,
Ramli, A., Wahab, R. & Huyop, F. 2018. Synthesis and characterization of
mesoporous silica nanoparticles using ionic liquid as template. Journal of
Physics: Conference Series. IOP Publishing. 012068.
Sabbagh, F. & Muhamad,
I.I. 2017. Acrylamide-based hydrogel
drug delivery systems: Release of Acyclovir from MgO nanocomposite hydrogel. Journal
of the Taiwan Institute of Chemical Engineers 72: 182-193.
Saptiama, I., Kaneti,
Y.V., Oveisi, H., Suzuki, Y., Tsuchiya, K., Takai, K., Sakae, T., Pradhan, S.,
Hossain, S.A., Fukumitsu, N., Ariga, K. & Yamauch, Y. 2018. Molybdenum
adsorption properties of alumina-embedded mesoporous silica for medical
radioisotope production. Bulletin of the Chemical Society of Japan 91(2): 195-200.
Slowing, I.I.,
Vivero-Escoto, J.L., Trewyn, B.G. & Lin, V.S.Y. 2010. Mesoporous silica
nanoparticles: Structural design and applications. Journal of Materials
Chemistry 20(37): 7924-7937.
Sriamornsak, P.,
Nunthanid, J., Cheewatanakornkool, K. & Manchun, S. 2010. Effect of drug
loading method on drug content and drug release from calcium pectinate gel
beads. AAPS PharmSciTech 11(3): 1315-1319.
Szegedi, A., Popova, M.,
Goshev, I. & Mihály, J. 2011. Effect of amine functionalization of
spherical MCM-41 and SBA-15 on controlled drug release. Journal of Solid
State Chemistry 184(5): 1201-1207.
Vadia, N. & Rajput, S.
2011. Mesoporous material, MCM-41: A new drug carrier. Asian Journal of
Pharmaceutical and Clinical Research 4(2): 44-53.
Vallet-Regí, M., Colilla,
M., Izquierdo-Barba, I. & Manzano, M. 2018. Mesoporous silica nanoparticles
for drug delivery: Current insights. Molecules 23(1): 47.
Wang, Y., Zhao, Q., Hu,
Y., Sun, L., Bai, L., Jiang, T. & Wang, S. 2013. Ordered nanoporous silica
as carrier for improved delivery of water insoluble drugs: A comparative study
between three dimensional and two dimensional macroporous silica. International Journal Nanomedicine 8:
4015-4031.
Ward, A.J., Pujari, A.A.,
Costanzo, L., Masters, A.F. & Maschmeyer, T. 2011. Ionic liquid-templated
preparation of mesoporous silica embedded with nanocrystalline sulfated
zirconia. Nanoscale Research Letters 6(1): 192.
Xie, Y., Kocaefe, D.,
Chen, C. & Kocaefe, Y. 2016. Review
of research on template methods in preparation of nanomaterials. Journal of
Nanomaterials 2302595.
Xu, Z., Ji, Y., Guan, M.,
Zhao, C. & Zhang, H. 2010. Preparation and characterization of
L-Leucine-modified amphiprotic bifunctional mesoporous SBA-15 molecular sieve
as a drug carrier for ribavirin. Applied Surface Science 256(10):
3160-3165.
Zaharudin, N.S., Mohamed
Isa, E.D., Ahmad, H., Abdul Rahman, M.B. & Jumbri, K. 2020. Functionalized
mesoporous silica nanoparticles templated by pyridinium ionic liquid for
hydrophilic and hydrophobic drug release application. Journal of Saudi
Chemical Society 24(3): 289-302.
Zhang, J., Ma, Y., Shi,
F., Liu, L. & Deng, Y. 2009. Room temperature ionic liquids as templates in
the synthesis of mesoporous silica via a sol-gel method. Microporous and
Mesoporous Materials 119(1-3): 97-103.
*Corresponding author; email: khairulazhar.jumbri@utp.edu.my
|