Sains Malaysiana 51(8)(2022): 2695-2711

http://doi.org/10.17576/jsm-2022-5108-27

 

Aktiviti Antimikrob Selulosa Bakteria daripada Komagataeibacter xylinus menggunakan Minuman Manis Komersial yang Tempoh sebagai Punca Karbon

(Antimicrobial Activity of Bacterial Cellulose from Komagataeibacter xylinus using Expired Commercial Sweet Drinks as a Source of Carbon)

 

TING JING YI1, FABIANA FRANCIS1, SAHILAH ABD MUTALIB1,2 & NURUL AQILAH MOHD ZAINI1,2,*

 

1Department of Food Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia

2Innovation Centre for Confectionery Technology (MANIS), Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia

 

Received: 24 February 2022/Accepted: 21 April 2022

 

Abstrak

Selulosa bakteria (SB) adalah biopolimer yang penting kepada industri makanan kerana ciri uniknya seperti kapasiti pegangan air (WHC) dan kekuatan mekanikal yang tinggi. SB berpotensi untuk diinovasi dengan penambahan bahan pengawet bagi menyelesaikan masalah pencemaran makanan oleh bakteria patogen. Strain Komagataeibacter xylinus mampu menghasilkan SB yang tinggi melalui proses fermentasi. Namun, proses ini melibatkan penggunaan substrat berkos tinggi. Justeru, penyelidikan ini dijalankan untuk menghasilkan SB daripada punca bernilai rendah seperti minuman manis tamat tempoh dan menilai sifat antimikrob SB terhadap Salmonella Typhi. Fasa pertama kajian, faktor yang mempengaruhi penghasilan SB telah dikaji. Keputusan menunjukkan bahawa hari optimum untuk penghasilan SB adalah pada hari ke-10 fermentasi sebanyak 122.06 g/l. Nilai pH menurun daripada 5.82 pada hari 0 kepada 3.95 setelah 12 hari fermentasi. Kepekatan sukrosa dan protein menurun secara signifikan (p<0.05) sepanjang tempoh fermentasi. WHC bagi SB adalah sebanyak 22.53 g air/g selulosa dan kadar penyerapan air meningkat apabila masa rendaman meningkat. Ujian biodegradasi pula menunjukkan SB basah mengurai lebih pantas (95.85%) berbanding dengan SB kering (68.1%) setelah 8 hari analisis. Pada fasa kedua kajian, SB telah ditambahkan dengan natrium benzoat dan kalium sorbat menggunakan masa rendaman (0.5, 3, 6 dan 24 jam) dan kepekatan yang berbeza (25, 50, 100, 250, 500 dan 1000 mg/mL) dalam keadaan basah dan kering. Keputusan menunjukkan SB mampu menyerap agen antimikrob dan berjaya menghalang pertumbuhan S. Typhi. SB basah menunjukkan zon perencatan terbesar (29 dan 17.5 mm) berbanding dengan SB kering (12 dan 14 mm) pada 24 jam rendaman dalam kepekatan 1000 mg/mL masing-masing untuk larutan natrium benzoat dan kalium sorbat. Kajian ini menunjukkan potensi selulosa bakteria untuk dijadikan sebagai pembungkus aktif bagi memanjangkan jangka hayat makanan.

 

Kata kunci: Jangka hayat; Komagataeibacter xylinus; minuman manis tamat tempoh; selulosa bakteria

 

Abstract

Bacterial cellulose (BC) is an important biopolymer to the food industry because of its unique properties such as high in water holding capacity (WHC) and mechanical strength. SB has the potential to be innovated with the addition of preservatives to solve the problem of food contamination by pathogenic bacteria. Komagataeibacter xylinus is able to produce high amount of BC through fermentation process. However, the process involves the use of high cost substrates. Therefore, this study was conducted to produce BC from low value sources such as expired sugary drinks, and to evaluate the antimicrobial properties of BC against Salmonella Typhi. During the first phase of the study, the factors influencing the production of BC were studied. Results showed that the optimal period for BC production was on the 10th day of fermentation with 122.06 g/l BC produced. The pH value decreased from 5.82 on day 0 to 3.95 after 12 days of fermentation. Sucrose and protein concentrations decreased significantly (p <0.05) during the fermentation period. The WHC for BC was 22.53 g water/g cellulose and the water absorption rate increased as the immersion time increased. Biodegradation tests showed that wet BC decomposed faster (95.85%) compared to dry BC (68.1%) after 8 days of analysis. In the second phase of the study, dry and wet BC were supplemented with sodium benzoate and potassium sorbate at different immersion times (0.5, 3, 6, and 24 h) and different concentrations (25, 50, 100, 250, 500, and 1000 mg/mL). Results showed that BC was able to absorb antimicrobial agents and successfully inhibited the growth of S. Typhi. Wet BC showed the largest inhibition zone (29 and 17.5 mm) compared with dry SB (12 and 14 mm) at 24 h of immersion in a concentration of 1000 mg/mL of sodium benzoate and potassium sorbate solution, respectively. This study shows the potential of bacterial cellulose to be used as an active packaging to extend the shelf life of food.

 

Keywords: Bacterial cellulose; expired sugary drinks; Komagataeibacter xylinus; shelf life

 

REFERENCES

Abdulkhani, A., Hojati Marvast, E., Ashori, A., Hamzeh, Y. & Karimi, A.N. 2013. Preparation of cellulose/polyvinyl alcohol biocomposite films using 1-n-butyl-3-methylimidazolium chloride. International Journal of Biological Macromolecules 62: 379-386.

Afiqah, A. & Aqilah, N. 2020. Potensi selulosa bakteria sebagai pembungkusan makanan lestari. Ijazah Sarjana Sains Muda, Tesis, Fakulti Sains dan Teknologi Universiti Kebangsaan Malaysia (Tidak diterbitkan).

Amin, M.C.I.M., Abadi, A.G., Ahmad, N., Katas, H. & Jamal, J.A. 2012. Bacterial cellulose film coating as drug delivery system: Physicochemical, thermal and drug release properties. Sains Malaysiana 41(5): 561-568.

Augusto, A.G. & Oliveira, M. 2017. Safety and quality of antimicrobial packaging applied to seafood. MOJ Food Processing & Technology 4(1): 00079.

Aswini, K., Gopal, N.O. & Sivakumar, U. 2020. Optimized culture conditions for bacterial cellulose production by Acetobacter senegalensis MA1. BMC Biotechnology 20: 46. https://doi.org/10.1186/s12896-020-00639-6

Azeredo, H.M.C., Barud, H., Farinas, C.S., Vasconcellos, V.M. & Claro, A.M. 2019. Bacterial cellulose as a raw material for food and food packaging applications. Frontiers in Sustainable Food Systems 3. http://dx.doi.org/10.3389/fsufs.2019.00007

Betlej, I., Zakaria, S., Krajewski, K.J. & Boruszewski, P. 2021. Bacterial cellulose - Properties and its potential application. Sains Malaysiana 50(2): 493-505.

Cabezas-Pizarro, J., Redondo-Solano, M., Umaña-Gamboa, C. & Arias-Echandi, M.L. 2017. Antimicrobial activity of different sodium and potassium salts of carboxylic acid against some common food borne pathogens and spoilage-associated bacteria. Revista Argentina de Microbiología 50(1): 56-61.

Campano, C., Balea, A., Blanco, A. & Negro, C. 2016. Enhancement of the fermentation process and properties of bacterial cellulose. A review. Cellulose 23: 57-91.

Chawla, P.R., Bajaj, I.B., Survase, S.A. & Singhal, R.S. 2009. Microbial cellulose: Fermentative production and application. Food Technology and Biotechnology 47(2): 107-124.

Daud, N., Sarbini, S.R., Babji, A.S., Mohamad Yusop, S. & Lim, S.J. 2019. Characterization of edible swiftlet’s nest as a prebiotic ingredient using a simulated colon model. Ann. Microbiol. 69: 1235-1246.

Dirpan, A., Kamaruddin, I., Syarifuddin, A., Zainal, Rahman, A.N.F., Hafidzah, Latief, R. & Prashti, K.I. 2019. Characteristics of bacterial cellulose derived from two nitrogen sources: Ammonium sulphate and yeast extract as an indicator of smart packaging on fresh meat. The 3rd International Symposium on Agricultural and Biosystem Engineering. IOP Conference Series: Earth and Environmental Science 355(1): 012040. DOI:10.1088/1755-1315/355/1/012040

Elfari, M., Ha, S., Bremus, C., Merfort, M., Khodaverdi, V., Hermann, U., Sahm, H. & Görisch, H. 2005. A Gluconobacter oxydans mutant coverting glucose almost qualitatively to 5 keto-d gluconic acid. Applied Microbiology and Biotechnology 66: 668-674.

Fabiana, F. 2021. Penghasilan selulosa bakteria daripada munuman cordial yang tamat tempoh dan potensi penggunaanya sebagai gel selulosa anti-pemerangan. Ijazah Sarjana Sains, Tesis, Fakulti Sains dan Teknologi Universiti Kebangsaan Malaysia (Tidak diterbitkan).

Gao, H., Sun, Q., Han, Z., Li, J., Liao, B., Lulu, H. & Jin, M. 2020. Comparison of bacterial nanocellulose produced by different strains under static and agitated culture conditions. Carbohydrate Polymers 227: 115323.

Gedarawatte, S., Ravensdale, J., Al-Salami, H., Dykes, G.A. & Coorey, R. 2021. Antimicrobial efficacy of nisin-loaded bacterial cellulose nanocrystals against selected meat spoilage lactic acid bacteria. Carbohydrate Polymers 251: 117096.

Halib, N., Cairul, M. & Ahmad, I. 2012. Physicochemical properties and characterization of nata de coco from local food industries as a source of cellulose. Sains Malaysia 41(2): 205-211.

Khalid, A., Ullah, H., Ul-Islam, M., Khan, R., Khan, S., Ahmad, F., Khan, T. & Wahid, F. 2017. Bacterial cellulose–TiO2 nanocomposites promote healing and tissue regeneration in burn mice model. Royal Society of Chemistry 75: 47662-47668.

Karol, K. 2021. Water and Cellulose: Adsorption and Diffusion of Water in the Pores of Amorphous Cellulose. http://www.physicasolutions.com/projects/cellulose.html#:~:text=The%20adsorption%20of%20water%20in%20hydrophilic%20polymers%20such,adsorbed%20attracted%20by%20strong%20energy%20of%20hydrogen%20bondsDiakses pada 7 September 2021.

Khan, S., Ul-Islam, M., Khattak, W., Ullah, M. & Park, J. 2015. Bacterial cellulose–poly(3,4-ethylenedioxythiophene)–poly(styrenesulfonate) composites for optoelectronic applications. Carbohydrate Polymers 127: 86-93.

Kurosumi, A., Sasaki, C., Yamashita, Y. & Nakamura, Y. 2009. Utilization of various fruit juices as carbon source for production of bacterial cellulose by Acetobacter xylinum NBRC 13693. Carbohydrate Polymers 76(2): 333-335.

Kushairi. A. 2019. Food for thought. New Straits Times. https://www.nst.com.my/opinion/columnists/2018/08/404704/food-thought. Diakses pada 8 Disember 2020.

Land Portal, 2018. Waste Water Management - The Role of Industries. Land Portal Foundation https://landportal.org/news/2017/03/waste-water-management-%E2%80%93-role-industries. Diakses pada 22 November 2020.

Lavasani, P.S., Motevaseli, E., Sanikhani, N.S. & Modarressi, M.H. 2019. Komagataeibacter xylinus as a novel probiotic candidate with high glucose conversion rate properties. Heliyon 5(4): e01571.

Lee, K.Y., Buldum, G., Mantalaris, A. & Bismarck, A. 2014. More than meets the eye in bacterial cellulose: Biosynthesis, bioprocessing, and applications in advanced fiber composites. Macromolecular Bioscience 14(1): 10-32.

Lestari, P., Elfrida, N., Suryani, A. & Suryadi, Y. 2014. Study on the production of bacterial cellulose from Acetobacter xylinum using agro-waste. Journal of Biological Sciences 7(1): 75-80.

Libretext. 2021. Testing the effectiveness of antimicrobial chemicals and drugs. Biology LibreTexts. Diakses pada 2 September 2021.

Limjaroen, P., Ryser, E., Lockhart, H. & Harte, B. 2003. Development of a food packaging coating material with antimicrobial properties. Journal of Plastic Film & Sheeting 19(2): 95-109.

Mendonc, A.F. 1992. Mechanism of inhibitory action of potassium sorbate in Escherichia coli. Retrospective Theses and Dissertations. Iowa State University (Tidak diterbitkan).

Peraturan-Peraturan Makanan 1985. 2020. Food Act 1983 (Act 281) & Regulations. Malaysia: International Law Book Services.

Pourramezan, Z. & Ghezelbash, G.R. 2009. Optimization of culture conditions for bacterial cellulose production by Acetobacter sp. 4B-2. Journal of Microbiology 25(7): 126-132.

Rahman, N.A., Kamarudin, N.S., Esaa, F., Kalila, M.S. & Kamarudin, S.K. 2019. Bacterial cellulose as a potential hard gelatin capsule. Jurnal Kejuruteraan SI 2(1): 151-156.

Rawdkuen, S., Punbusayakul, N. & Lee, D.S. 2016. Antimicrobial packaging for meat products. In Antimicrobial Food Packaging, edited by Barros-Velázquez, J. Boca Raton: Academic Press. pp. 229-241.

Richards, H., Priscilla, B. & Emmanuel, I. 2012. Metal nanoparticle modified polysulfone membranes for use in wastewater treatment: A critical review. Journal of Surface Engineered Materials and Advanced Technology 2(3): 183-193.

Shrapnel, W.S. & Butcher, B.E. 2020. Sales of sugar-sweetened beverages in Australia: A trend analysis from 1997 to 2018. Nutrients 12(4): 1016.

Shyam, S., Misra, S., Zain, M.H., Chiong, H.Z. & Don, R. 2019. Developments in the implementation of sugar-sweetened beverage tax in Malaysia - A narrative review. leJSME 13(2): 12-22.

Sofia, M., Amarra, R., Khor, G.L. & Pauline, C. 2016. Intake of added sugar in Malaysia: A review. Asia Pacific Journal Clinical Nutrition 25(2): 227-240.

Stanjevic, D., Comic, L., Stefanovic, O. & Solujic, S. 2009. Antimicrobial effects of sodium benzoate, sodium nitrite andpotassium sorbate and their synergistic action in vitro. Bulgarian Journal of Agricultural Science 15(4): 307-311.

Swingler, S., Gibson, H., Gupta, A. & Kowalczuk, M. 2021. Recent advances and applications of bacterial cellulose in biomedicine. Polymers 13(3): 412.

Ul-Islam, M., Khan, T. & Park, J.K. 2012. Nanoreinforced bacterial cellulosemontmorillonite composites for biomedical applications. Carbohydrate Polymers 89: 1189-1197.

Zahan, K.A., Azizul, N.M., Mustapha, M., Tong, W.Y., Abdul Rahman, M.S. & Sahuri, I.S. 2020. Application of bacterial cellulose film as a biodegradable and antimicrobial packaging material. Materials Today: Proceedings 31(1): 83-88.

Zahan, K.A., Pa’e, N. & Muhamad, I.I. 2016. Monitoring the effect of pH on bacterial cellulose production and Acetobacter xylinum 0416 growth in a rotary discs reactor. Arabian Journal for Science and Engineering 40(7): 1881-1885.

Żywicka, A., Ciecholewska-juśko, D., Drozd, R., Rakoczy, R., Konopacki, M., Kordas, M., Junka, A., Migdał, P. & Fijałkowski, K. 2021. Preparation of Komagataeibacter xylinus inoculum for bacterial cellulose biosynthesis using magnetically assisted external-loop airlift bioreactor. Polymers 13(22): 1-17.

 

*Corresponding author; email: nurulaqilah@ukm.edu.my

 

 

 

 

 

previous