Sains
Malaysiana 51(8)(2022): 2695-2711
http://doi.org/10.17576/jsm-2022-5108-27
Aktiviti Antimikrob Selulosa Bakteria daripada Komagataeibacter xylinus menggunakan
Minuman Manis Komersial yang Tempoh sebagai Punca Karbon
(Antimicrobial Activity of Bacterial Cellulose from Komagataeibacter xylinus using Expired
Commercial Sweet Drinks as a Source of Carbon)
TING
JING YI1, FABIANA FRANCIS1, SAHILAH ABD MUTALIB1,2 & NURUL AQILAH MOHD ZAINI1,2,*
1Department of Food Sciences, Faculty
of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi,
Selangor Darul Ehsan, Malaysia
2Innovation Centre for Confectionery
Technology (MANIS), Faculty of Science and Technology, Universiti Kebangsaan
Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia
Received:
24 February 2022/Accepted: 21 April 2022
Abstrak
Selulosa bakteria (SB) adalah biopolimer yang penting kepada
industri makanan kerana ciri uniknya seperti kapasiti pegangan air (WHC) dan
kekuatan mekanikal yang tinggi. SB berpotensi untuk diinovasi dengan penambahan
bahan pengawet bagi menyelesaikan masalah pencemaran makanan oleh bakteria
patogen. Strain Komagataeibacter xylinus mampu menghasilkan SB yang tinggi melalui proses fermentasi. Namun, proses ini
melibatkan penggunaan substrat berkos tinggi. Justeru, penyelidikan ini
dijalankan untuk menghasilkan SB daripada punca bernilai rendah seperti minuman
manis tamat tempoh dan menilai sifat antimikrob SB terhadap Salmonella Typhi. Fasa
pertama kajian, faktor yang mempengaruhi penghasilan SB telah dikaji. Keputusan
menunjukkan bahawa hari optimum untuk penghasilan SB adalah pada hari ke-10
fermentasi sebanyak 122.06 g/l. Nilai pH menurun daripada 5.82 pada hari 0
kepada 3.95 setelah 12 hari fermentasi. Kepekatan sukrosa dan protein menurun
secara signifikan (p<0.05) sepanjang tempoh fermentasi. WHC bagi SB adalah
sebanyak 22.53 g air/g selulosa dan kadar penyerapan air meningkat
apabila masa rendaman meningkat. Ujian biodegradasi pula menunjukkan SB basah
mengurai lebih pantas (95.85%) berbanding dengan SB
kering (68.1%) setelah 8 hari analisis. Pada fasa kedua kajian, SB telah
ditambahkan dengan natrium benzoat dan kalium sorbat menggunakan masa rendaman
(0.5, 3, 6 dan 24 jam) dan kepekatan yang berbeza (25, 50, 100, 250, 500 dan
1000 mg/mL) dalam keadaan basah dan kering. Keputusan menunjukkan SB mampu
menyerap agen antimikrob dan berjaya menghalang pertumbuhan S. Typhi. SB basah menunjukkan zon
perencatan terbesar (29 dan 17.5 mm) berbanding dengan SB kering (12 dan 14 mm)
pada 24 jam rendaman dalam kepekatan 1000 mg/mL masing-masing untuk larutan
natrium benzoat dan kalium sorbat. Kajian ini menunjukkan potensi selulosa
bakteria untuk dijadikan sebagai pembungkus aktif bagi memanjangkan jangka
hayat makanan.
Kata kunci: Jangka
hayat; Komagataeibacter xylinus;
minuman manis tamat tempoh; selulosa bakteria
Abstract
Bacterial cellulose (BC)
is an important biopolymer to the food industry because of its unique
properties such as high in water holding capacity (WHC) and mechanical
strength. SB has the potential to be innovated with the addition of
preservatives to solve the problem of food contamination by pathogenic
bacteria. Komagataeibacter xylinus is
able to produce high amount of BC through fermentation process. However, the
process involves the use of high cost substrates. Therefore, this study was
conducted to produce BC from low value sources such as expired sugary drinks,
and to evaluate the antimicrobial properties of BC against Salmonella Typhi. During the first phase of the study, the factors
influencing the production of BC were studied. Results showed that the optimal
period for BC production was on the 10th day of fermentation with 122.06 g/l BC
produced. The pH value decreased from 5.82 on day 0 to 3.95 after 12 days of
fermentation. Sucrose and protein concentrations decreased significantly (p
<0.05) during the fermentation period. The WHC for BC was 22.53 g water/g
cellulose and the water absorption rate increased as the immersion time
increased. Biodegradation tests showed that wet BC decomposed faster (95.85%)
compared to dry BC (68.1%) after 8 days of analysis. In the second phase of the
study, dry and wet BC were supplemented with sodium benzoate and potassium
sorbate at different immersion times (0.5, 3, 6, and 24 h) and different
concentrations (25, 50, 100, 250, 500, and 1000 mg/mL). Results showed that BC
was able to absorb antimicrobial agents and successfully inhibited the growth
of S. Typhi. Wet BC showed the largest
inhibition zone (29 and 17.5 mm) compared with dry SB (12 and 14 mm) at 24 h of
immersion in a concentration of 1000 mg/mL of sodium benzoate and potassium
sorbate solution, respectively. This study shows the potential of bacterial
cellulose to be used as an active packaging to extend the shelf life of food.
Keywords: Bacterial
cellulose; expired sugary drinks; Komagataeibacter xylinus; shelf life
REFERENCES
Abdulkhani, A., Hojati Marvast, E.,
Ashori, A., Hamzeh, Y. & Karimi, A.N. 2013. Preparation of
cellulose/polyvinyl alcohol biocomposite films using
1-n-butyl-3-methylimidazolium chloride. International
Journal of Biological Macromolecules 62: 379-386.
Afiqah, A. & Aqilah, N. 2020.
Potensi selulosa bakteria sebagai pembungkusan makanan lestari. Ijazah Sarjana
Sains Muda, Tesis, Fakulti Sains dan Teknologi Universiti Kebangsaan
Malaysia (Tidak diterbitkan).
Amin, M.C.I.M., Abadi, A.G., Ahmad,
N., Katas, H. & Jamal, J.A. 2012. Bacterial cellulose film coating as drug
delivery system: Physicochemical, thermal and drug release properties. Sains
Malaysiana 41(5): 561-568.
Augusto, A.G. & Oliveira, M.
2017. Safety and quality of antimicrobial packaging applied to seafood. MOJ Food Processing & Technology 4(1):
00079.
Aswini, K., Gopal, N.O. &
Sivakumar, U. 2020. Optimized culture conditions for bacterial cellulose
production by Acetobacter senegalensis MA1. BMC Biotechnology 20: 46. https://doi.org/10.1186/s12896-020-00639-6
Azeredo, H.M.C., Barud, H., Farinas,
C.S., Vasconcellos, V.M. & Claro, A.M. 2019. Bacterial cellulose as a raw
material for food and food packaging applications. Frontiers in Sustainable Food Systems 3.
http://dx.doi.org/10.3389/fsufs.2019.00007
Betlej, I., Zakaria, S., Krajewski, K.J. &
Boruszewski, P. 2021. Bacterial cellulose - Properties and its potential
application. Sains Malaysiana 50(2): 493-505.
Cabezas-Pizarro, J.,
Redondo-Solano, M., Umaña-Gamboa, C. & Arias-Echandi, M.L. 2017.
Antimicrobial activity of different sodium and potassium salts of carboxylic
acid against some common food borne pathogens and spoilage-associated bacteria. Revista Argentina de Microbiología 50(1): 56-61.
Campano, C., Balea, A., Blanco, A. & Negro, C. 2016.
Enhancement of the fermentation process and properties of bacterial cellulose.
A review. Cellulose 23: 57-91.
Chawla, P.R., Bajaj, I.B., Survase, S.A. & Singhal,
R.S. 2009. Microbial cellulose: Fermentative production and application. Food Technology and Biotechnology 47(2): 107-124.
Daud, N., Sarbini, S.R., Babji, A.S., Mohamad Yusop, S.
& Lim, S.J. 2019. Characterization of edible swiftlet’s nest as a prebiotic
ingredient using a simulated colon model. Ann. Microbiol. 69: 1235-1246.
Dirpan, A., Kamaruddin,
I., Syarifuddin, A., Zainal, Rahman, A.N.F., Hafidzah, Latief, R. &
Prashti, K.I. 2019. Characteristics
of bacterial cellulose derived from two nitrogen sources: Ammonium sulphate and
yeast extract as an indicator of smart packaging on fresh meat. The 3rd
International Symposium on Agricultural and Biosystem Engineering. IOP Conference Series: Earth and Environmental Science 355(1):
012040. DOI:10.1088/1755-1315/355/1/012040
Elfari, M., Ha, S., Bremus, C.,
Merfort, M., Khodaverdi, V., Hermann, U., Sahm, H. & Görisch, H. 2005. A Gluconobacter
oxydans mutant coverting glucose almost qualitatively to 5 keto-d gluconic
acid. Applied Microbiology and
Biotechnology 66: 668-674.
Fabiana, F. 2021. Penghasilan
selulosa bakteria daripada munuman cordial yang tamat tempoh dan potensi
penggunaanya sebagai gel selulosa anti-pemerangan. Ijazah Sarjana Sains, Tesis,
Fakulti Sains dan Teknologi Universiti Kebangsaan Malaysia (Tidak diterbitkan).
Gao, H., Sun, Q., Han, Z., Li, J., Liao, B., Lulu, H.
& Jin, M. 2020. Comparison of bacterial nanocellulose produced by different
strains under static and agitated culture conditions. Carbohydrate Polymers 227: 115323.
Gedarawatte, S., Ravensdale, J., Al-Salami, H., Dykes,
G.A. & Coorey, R. 2021. Antimicrobial efficacy of nisin-loaded bacterial
cellulose nanocrystals against selected meat spoilage lactic acid bacteria. Carbohydrate Polymers 251: 117096.
Halib, N., Cairul, M. & Ahmad, I. 2012. Physicochemical
properties and characterization of nata de coco from local food industries as a
source of cellulose. Sains Malaysia 41(2): 205-211.
Khalid, A., Ullah, H., Ul-Islam, M.,
Khan, R., Khan, S., Ahmad, F., Khan, T. & Wahid, F. 2017. Bacterial
cellulose–TiO2 nanocomposites promote healing and tissue regeneration in burn
mice model. Royal Society of Chemistry 75: 47662-47668.
Karol, K. 2021. Water
and Cellulose: Adsorption and Diffusion of Water in the Pores of Amorphous
Cellulose. http://www.physicasolutions.com/projects/cellulose.html#:~:text=The%20adsorption%20of%20water%20in%20hydrophilic%20polymers%20such,adsorbed%20attracted%20by%20strong%20energy%20of%20hydrogen%20bondsDiakses pada 7 September 2021.
Khan, S., Ul-Islam, M., Khattak, W., Ullah, M. & Park,
J. 2015. Bacterial
cellulose–poly(3,4-ethylenedioxythiophene)–poly(styrenesulfonate) composites
for optoelectronic applications. Carbohydrate
Polymers 127: 86-93.
Kurosumi, A., Sasaki,
C., Yamashita, Y. & Nakamura, Y. 2009. Utilization of various fruit juices
as carbon source for production of bacterial cellulose by Acetobacter xylinum NBRC 13693. Carbohydrate
Polymers 76(2): 333-335.
Kushairi. A. 2019. Food for thought. New
Straits Times. https://www.nst.com.my/opinion/columnists/2018/08/404704/food-thought.
Diakses pada 8 Disember 2020.
Land Portal, 2018. Waste Water Management - The Role of Industries. Land Portal
Foundation https://landportal.org/news/2017/03/waste-water-management-%E2%80%93-role-industries. Diakses pada 22
November 2020.
Lavasani,
P.S., Motevaseli, E., Sanikhani, N.S. & Modarressi, M.H. 2019. Komagataeibacter
xylinus as a novel probiotic candidate with high glucose conversion rate
properties. Heliyon 5(4): e01571.
Lee,
K.Y., Buldum, G., Mantalaris, A. & Bismarck, A. 2014. More than meets the
eye in bacterial cellulose: Biosynthesis, bioprocessing, and applications in
advanced fiber composites. Macromolecular
Bioscience 14(1): 10-32.
Lestari, P., Elfrida, N., Suryani,
A. & Suryadi, Y. 2014. Study on the production of bacterial cellulose from Acetobacter xylinum using agro-waste. Journal of Biological Sciences 7(1):
75-80.
Libretext. 2021. Testing the effectiveness of antimicrobial chemicals and drugs. Biology LibreTexts. Diakses pada 2
September 2021.
Limjaroen, P., Ryser, E., Lockhart,
H. & Harte, B. 2003. Development of a food packaging coating material with
antimicrobial properties. Journal of
Plastic Film & Sheeting 19(2): 95-109.
Mendonc, A.F. 1992. Mechanism of
inhibitory action of potassium sorbate in Escherichia
coli. Retrospective Theses and Dissertations. Iowa State University (Tidak
diterbitkan).
Peraturan-Peraturan
Makanan 1985. 2020. Food Act 1983 (Act
281) & Regulations. Malaysia: International Law Book Services.
Pourramezan, Z. &
Ghezelbash, G.R. 2009. Optimization of culture conditions for bacterial
cellulose production by Acetobacter sp. 4B-2. Journal of Microbiology 25(7): 126-132.
Rahman, N.A., Kamarudin,
N.S., Esaa, F., Kalila, M.S. & Kamarudin, S.K. 2019. Bacterial cellulose as
a potential hard gelatin capsule. Jurnal
Kejuruteraan SI 2(1): 151-156.
Rawdkuen, S.,
Punbusayakul, N. & Lee, D.S. 2016. Antimicrobial packaging for meat
products. In Antimicrobial Food Packaging, edited by Barros-Velázquez, J. Boca Raton: Academic Press. pp. 229-241.
Richards, H., Priscilla, B. &
Emmanuel, I. 2012. Metal nanoparticle modified polysulfone membranes for use in
wastewater treatment: A critical review.
Journal of Surface Engineered Materials and Advanced Technology 2(3):
183-193.
Shrapnel, W.S. & Butcher, B.E.
2020. Sales of sugar-sweetened beverages in Australia: A trend
analysis from 1997 to 2018. Nutrients 12(4): 1016.
Shyam, S., Misra, S., Zain, M.H.,
Chiong, H.Z. & Don, R. 2019. Developments in the implementation of sugar-sweetened beverage tax
in Malaysia - A narrative review. leJSME 13(2): 12-22.
Sofia, M., Amarra, R., Khor, G.L.
& Pauline, C. 2016. Intake of added sugar in Malaysia: A review. Asia Pacific Journal Clinical Nutrition 25(2): 227-240.
Stanjevic, D., Comic, L.,
Stefanovic, O. & Solujic, S. 2009. Antimicrobial effects of sodium
benzoate, sodium nitrite andpotassium sorbate and their synergistic action in vitro. Bulgarian Journal of Agricultural Science 15(4): 307-311.
Swingler, S., Gibson, H., Gupta, A.
& Kowalczuk, M. 2021. Recent advances and applications of bacterial
cellulose in biomedicine. Polymers 13(3):
412.
Ul-Islam, M., Khan, T. & Park, J.K. 2012.
Nanoreinforced bacterial cellulosemontmorillonite composites for biomedical
applications. Carbohydrate Polymers 89: 1189-1197.
Zahan, K.A., Azizul, N.M., Mustapha,
M., Tong, W.Y., Abdul Rahman, M.S. & Sahuri, I.S. 2020. Application of
bacterial cellulose film as a biodegradable and antimicrobial packaging
material. Materials Today: Proceedings 31(1):
83-88.
Zahan, K.A., Pa’e, N. & Muhamad,
I.I. 2016. Monitoring the effect of pH on bacterial cellulose production and Acetobacter xylinum 0416 growth in a
rotary discs reactor. Arabian Journal for
Science and Engineering 40(7): 1881-1885.
Żywicka,
A., Ciecholewska-juśko, D., Drozd, R., Rakoczy, R., Konopacki, M., Kordas,
M., Junka, A., Migdał, P. & Fijałkowski, K. 2021. Preparation of Komagataeibacter xylinus inoculum for
bacterial cellulose biosynthesis using magnetically assisted external-loop
airlift bioreactor. Polymers 13(22):
1-17.
*Corresponding author; email: nurulaqilah@ukm.edu.my
|