Sains Malaysiana
51(9)(2022):
2803-2816
http://doi.org/10.17576/jsm-2022-5109-06
Comparative Arsenic Tolerance and Accumulation
Potential between Wild Tagetes patula and Tagetes minuta
(Toleransi dan Potensi
Pengumpulan Arsenik Perbandingan antara Tagetes patula dan Tagetes minuta Liar)
IRUM
SHAHZADI1,*, MOHAMMAD MAROOF SHAH1, IRRUM SALEEM AKHTAR1,
TARIQ ISMAIL2, RAZA AHMAD1, ISMAT NAWAZ3, MARIA SIDDIQUE4, SOFIA BAIG5,
AYESHA BAIG1 & UMMARA WAHEED6
1Department
of Biotechnology, COMSATS University Islamabad, Abbottabad Campus, 22060,
Pakistan
2Department
of Pharmacy, COMSATS University Islamabad, Abbottabad Campus, 22060,
Pakistan
3Department
of Biosciences, COMSATS University Islamabad, 45550, Pakistan
4Department
of Environmental Sciences, COMSATS University Islamabad, Abbottabad Campus,
22060, Pakistan
5Institute of
Environmental Sciences and Engineering (IESE), National University of Sciences
and Technology, H-12, Islamabad, 44000, Pakistan
6Institute of Plant Breeding & Biotechnology, MNS University of
Agriculture, Multan, Pakistan
Received: 21 August 2021/Accepted: 2 April 2022
Abstract
Arsenic
(As) is a bioactive metalloid that is highly toxic to humans, animals, and
plants. Environmental contamination of As especially in groundwater increases due to natural and anthropogenic
activities.
The present study was performed to evaluate the potential of wild Tagetes species for the phytoremediation of As contaminated soil/water. This
comparative research aims to analyze As accumulation and tolerance in two wild
species of Tagetes, T. minuta and T. patula. The 20 days
old seedlings were grown hydroponically and exposed to the different
concentrations of As, 0, 50, 150, and 300 µM As2O3 for
1-, 4- and 7- days intervals. Effect of As stress was measured on
the rate of seed germination, growth parameters like fresh and dry biomass
weight, root/shoot length, chlorophyll contents and As contents in root and
shoot in both Tagetes species. Increasing concentration of As restricts the
growth activity of T. minuta with toxicity symptoms on leaves such as
chlorosis. Accumulation of As in the shoot was significantly (p ≤ 0.01) high (634 µg g-1 DW) in T. patula as compared to T. minuta (397 µg g-1 DW) at 300 µM As2O3. Both Tagetes species exhibited high variation for As tolerance parameters as well as for As
accumulation patterns. Comparatively good tolerance and accumulation of As in T.
patula suggests that this species could be used in phytoextraction and re-vegetation in As contaminated sites.
Keywords: Arsenic; phytoremediation; Tagetes minuta; Tagetes patula
Abstrak
Arsenik (As) ialah metaloid bioaktif yang sangat toksik kepada
manusia, haiwan dan tumbuhan. Pencemaran persekitaran disebabkan As terutamanya
pada air dalam tanah meningkat disebabkan oleh aktiviti semula jadi dan
antropogen. Kajian ini dilakukan untuk menilai potensi spesies Tagetes liar
sebagai fitoremediasi tanah/air yang tercemar As. Kajian perbandingan ini
bertujuan untuk menganalisis pengumpulan dan kerintangan As dalam dua spesies Tagetes liar, T. minuta dan T. patula. Anak pokok berusia 20 hari telah
ditanam secara hidroponik dan didedahkan kepada kepekatan As berbeza iaitu 0,
50, 150 dan 300 µM As2O3 untuk selang 1-, 4- dan 7 hari.
Kesan tekanan As diukur dengan melihat kepada kadar percambahan biji benih,
parameter pertumbuhan seperti berat biojisim segar dan kering, panjang
akar/pucuk, kandungan klorofil dan kandungan As dalam akar dan pucuk pada
kedua-dua spesies Tagetes. Peningkatan kepekatan As menyekat aktiviti
pertumbuhan T. minuta dengan gejala ketoksikan seperti klorosis pada
daun. Pengumpulan As dalam pucuk T. patula adalah tinggi (634 µg g-1 DW) dan berbeza secara bererti (p≤0.01) berbanding T. minuta (397
µg g-1 DW) pada 300 µM As2O3. Terdapat variasi
yang tinggi bagi parameter berkait kerintangan As begitu juga dengan corak
pengumpulan As pada kedua-dua spesies Tagetes. Kerintangan dan pengumpulan As dalam T. patula yang agak baik menunjukkan bahawa spesies ini boleh
digunakan dalam fitoekstraksi dan boleh ditanam di lokasi tercemar As.
Kata kunci: Arsenik; fitoremediasi; Tagetes minuta; Tagetes patula
References
Abbas, G., Murtaza, B., Bibi, I., Shahid, M., Niazi,
N.K., Khan, M.I., Amjad, M., Hussain, M. & Natasha. 2018. Arsenic uptake,
toxicity, detoxification, and speciation in plants: Physiological, biochemical,
and molecular aspects. International Journal of Environmental Research and
Public Health 15(1): 59.
Abid, R., Mahmood, S., Zahra, S., Ghaffar, S., Malik,
M. & Noreen, S. 2021. Jatropha curcas L. and Pongamia pinnata L. exhibited differential growth and bioaccumulation pattern irrigated with
wastewater. Sains Malaysiana 50(3): 559-570.
Ahmad, A.M., Gaur, R. & Gupta, M. 2012. Comparative
biochemical and RAPD analysis in two varieties of rice (Oryza sativa)
under arsenic stress by using various biomarkers. Journal of Hazardous
Materials 217-218: 141-148.
Angulo-Bejarano, P.I., Puente-Rivera, J. &
Cruz-Ortega, R. 2021. Metal and metalloid toxicity in plants: An overview on
molecular aspects. Plants 10(4): 635.
Anjum, S.A., Tanveer, M.,
Hussain, S., Ashraf, U., Khan, I. & Wang, L. 2017. Alteration in growth,
leaf gas exchange, and photosynthetic pigments of Maize plants under combined
cadmium and arsenic stress. Water, Air & Soil Pollution 228: 13.
Antenozio, M.L., Giannelli, G., Marabottini, R.,
Brunetti, P., Allevato, E., Marzi, D., Capobianco, G., Bonifazi, G., Serranti,
S., Visioli, G., Stazi, S.R. & Cardarelli, M. 2021. Phytoextraction
efficiency of Pteris vittata grown on a naturally As‑rich soil and
characterization of As‑resistant rhizosphere bacteria. Scientific
Reports 11: 6794.
Armendariz,
A.L., Talano, M.A., Travaglia, C., Reinoso, H., Oller, A.L.W. & Agostini,
E. 2016. Arsenic toxicity in soybean seedlings and their attenuation
mechanisms. Plant Physiology and Biochemistry 98: 119-127.
Arnon, D.I. 1949. Copper enzymes in isolated
chloroplasts. Polyphenoloxidase in Beta vulgaris. Plant Physiology 24(1): 1-15.
Atabaki, N., Shaharuddin, A.A., Ahmad, A.S., Nulit, R.
& Abiri, R. 2020. Assessment of water mimosa (Neptunia oleracea Lour.) morphological, physiological, and removal efficiency for
phytoremediation of arsenic-polluted water. Plants 9(11): 1500.
Baker, A.J.M. & Brooks, R.R. 1989. Terrestrial
higher plants which hyperaccumulate metallic elements - A review of their
distribution, ecology and phytochemistry. Biorecovery 1: 811.
Banerjee, A., Sarkar, S., Gorai,
S., Kabiraj, A. & Bandopadhyay, R. 2021. High
arsenic tolerance in Brevundimonas
aurantiaca PFAB1
from an arsenic-rich
Indian hot spring. Electronic Journal of Biotechnology 53:
1-7.
Behera, K.K. 2014. Phytoremediation,
Transgenic Plants and Microbes. Switzerland: Springer, Cham. pp. 65-85.
Bianconi, D., Pietrini, F., Massacci, A. &
Iannelli, M.A. 2013. Uptake of cadmium by Lemna minor, a (hyper?-)
accumulator plant involved in phytoremediation applications. E3S Web of
Conference 1: 13002.
Chandrakar, V., Naithani, S.C.
& Keshavkant, S. 2016. Arsenic-induced metabolic disturbances and their
mitigation mechanisms in crop plants: A review. Biologia 71: 367-377.
Chintakovid, W., Visoottiviseth,
P., Khokiattiwong, S. & Lauengsuchonkul, S. 2007. Potential of the hybrid
marigolds for arsenic phytoremediation and income generation of remediators in
Ron Phibun District, Thailand. Chemosphere 70(8): 1532-1537.
Choudhury, M.R., Islam, M.S., Ahmed, Z.U. & Nayar,
F. 2016. Phytoremediation of heavy metal contaminated Buriganga riverbed
sediment by Indian mustard and marigold plants. Environmental Progress & Sustainable
Energy 35(1): 117-124.
Chung, J., Yu, S. & Hong, Y.S. 2014. Environmental
source of arsenic exposure. Journal of Preventive Medicine and Public Health 47(5): 253-257.
Coakley, S., Cahill, G., Enright, A.M., Rourke, B.O.
& Petti, C. 2019. Cadmium hyperaccumulation and translocation in impatiens
glandulifera: From foe to friend? Sustainability 11(8): 5018.
Coelho, L.C., Bastos, A.R.R., Pinho, P.J., Souza,
G.A., Carvalho, J.G., Coelho, V.A.T., Oliveira, L.C.A., Domingues, R.R. &
Faquin, V. 2017. Marigold (Tagetes erecta): The potential value in the
phytoremediation of chromium. Pedosphere 27(3): 559-568.
Danh, L.T., Truong, P.,
Mammucari, R. & Foster, N.A. 2014. Critical review of the arsenic uptake
mechanisms and phytoremediation potential of Pteris vittate. International
Journal of Phytoremediation 16(5): 429-453.
Dobslaw, D., Woiski,
C., Kiel, M., Kuch, B. & Breuer, J. 2021.
Plant uptake, translocation and metabolism of PBDEs in plants of food and feed industry: A review.Reviews in Environmental Science and Biotechnology 20: 75-142.
Dushenko, W.T., Bright, D.A. & Reimer, K.J. 1995.
Arsenic bioaccumulation and toxicity in aquatic macrophytes to gold-mine
effluent: Relationship with environmental partitioning, metal uptake and
nutrients. Aquatic Botany 50: 141-158.
Elisa, C., Alisson, B. & Borges, C. 2020. Use of
plants in the remediation of arsenic contaminated waters. Water Environment
Research 92(2): 1669-1676.
Hashim, M.A., Mukhopadhyay,
S., Sahu, J.N. & Sengupta, B. 2011. Remediation technologies for heavy
metal contaminated ground water. Journal of Environmental Management 92(10):
2355-2388.
Hong, H.S., Choi, A.S., Yoon, H. & Cho, K.S. 2011.
Screening of Cucumis sativus as a new arsenic-accumulating plant and its
arsenic accumulation in hydroponic culture. Environmental Geochemistry and
Health 33(Supplementary 1): 143-149.
Jiang, Y., Lei, M., Duan, L.
& Philip, L. 2015. Integrating phytoremediation with biomass valorisation
and critical element recovery: A UK contaminated land perspective. Biomass
and Bioenergy 83: 328-339.
Kumar, S., Dubey, R.S.,
Tripathi, R.D., Chakrabarty, D. & Trivedi, P.K. 2015. Omics and
biotechnology of arsenic stress and detoxification in plants: Current updates
and prospective. Environment International 74: 221-230.
Leblanc,
M.S., Mckinney, E.C. Meagher, R.B. & Smith, A.P. 2013. Hijacking membrane transporters for arsenic
phytoextraction. Journal of Biotechnology 163(1): 1-9.
Li, C.X., Shu-Li, F., Yun, S., Li-Na, J., Yang, L.U.
& Xiao-Li, H. 2007. Effects of arsenic on seed germination and
physiological activities of wheat seedlings. Journal of Environmental
Sciences 19(6): 725-732.
Li, N., Wang, J. & Song, W.Y. 2016. Arsenic uptake
and translocation in plants. Plant Cell Physiology 57(1): 4-13.
Li, R., Dong,
F., Yang,
G., Zhang,
W., Zong,
M., Nie,
X., Zhou,
L., Babar,
A., Liu,
J., Ram,
K.B., Fan,
C. & Zeng Y. 2020. Characterization of arsenic and uranium pollution surrounding a
uranium mine in southwestern China and phytoremediation potential. Polish
Journal of Environmental Studies 29(1): 173-185.
Li, Y., Sun, Y., Jiang, J. & Liu, J. 2019.
Spectroscopic determination of leaf chlorophyll content and color for genetic
selection on Sassafras tzumu. Plant Methods 15: 73.
Lin, A., Zhang, X., Zhu, Y.G. & Zhao, F.J. 2008.
Arsenate-induced toxicity: Effects on antioxidative enzymes and DNA damage in Vicia
faba. Environmental Toxicology and Chemistry 27(2): 413-419.
Lyubenova, L., Pongrac, P., Vogel-Mikus, K., Mezek,
G.K., Vavpetic, P., Grlj, N., Regvar, M., Pelicon, P. & Schroder, P. 2013.
The fate of arsenic, cadmium and lead in Typha latifolia: A case study
on the applicability of micro-PIXE in plant ionomics. Journal of Hazardous
Material 15: 371-378.
Madanan, M.T., Shah, I.K., George, K. & Kaushal,
R.K. 2021. Application of aztec marigold (Tagetes erecta L.) for
phytoremediation of heavy metal polluted lateritic soil. Environmental
Chemistry and Ecotoxicology 3: 17-22.
Mandal, P. 2017. An insight
of environmental contamination of arsenic on animal health. Emerging
Contaminants3(1): 17-22.
Nahar, N., Rahman, A., Nawani, N.N., Ghosh, S. & Mandal, A. 2017. Phytoremediation of arsenic from the contaminated soil using transgenic
tobacco plants expressing ACR2 gene of Arabidopsis thaliana. Journal of Plant Physiology 218: 121-126.
Nawa, I., Iqbal, M., Bliek, M. & Schat, H. 2017.
Salt and heavy metal tolerance and expression levels of candidate tolerance
genes among four extremophile Cochlearia species with contrasting habitat
preferences. Science of the Total Environment 585: 731-741.
Pietrini, F., Iori, V., Pietrosanti, L., Zacchini, M.
& Massacci, A. 2020. Evaluation of multiple responses associated with
arsenic tolerance and accumulation in Pteris vittata L. plants exposed
to high As concentrations under hydroponics. Water 12(1): 3127.
R Core Team. 2018. R: A Language and Environment
for Statistical Computing. Vienna: Austria.
Reichman, S.M. 2002. The responses of plants to metal
toxicity: A review focusing on copper, manganese & zinc. Australian
Minerals and Energy Environment Foundation 14: 22-26.
Sahoo, P.K. & Kim, K. 2013. A review of the
arsenic concentration in paddy rice from the perspective of geoscience. Geosciences Journal 17: 107-122.
Salim, F., Setiadi, Y., Sopandie, D. & Yani, M.
2020. Adaptation selection of plants for utilization in phytoremediation of
soil contaminated by crude oil fadliah. HAYATI Journal of Biosciences 27(1): 45-56.
Sathya, V., Mahimairaja, S., Bharani, A. &
Krishnaveni, A. 2020. Influence of soil bioamendments on the availabilty of
nickel and phytoextraction capability of Marigold from the contaminated soil. International
Journal of Plant & Soil Science 31(5): 1-12.
Sghaier, D.B., Duarte, B., Bankaji, I.,
Caçador, I. & Sleimi, N. 2015. Growth, chlorophyll fluorescence and mineral nutrition in
the halophyte Tamarix gallica cultivated in combined stress
conditions: Arsenic and NaCl. Journal of Photochemistry
and Photobiology 149: 204-214.
Shahzadi, I.,
Ahmad, R., Hassan, A. & Shah, M.M. 2010. Optimization of DNA extraction from seeds
and fresh leaf tissues of wild marigold (Tagetes minuta) for polymerase
chain reaction analysis. Genetics and Molecular Research 9(1): 386-393.
Singh, H.P., Batish, D.R., Kohli, R.K. & Arora, K.
2007. Arsenic-induced root growth inhibition in mung bean (Phaseolus aureus Roxb.)
is due to oxidative stress resulting from enhanced lipid peroxidation. Plant
Growth Regulator 53: 65-73.
Singh, R., Singh, S.,
Parihar, P., Singh, V.P. & Prasad, S.M. 2015. Arsenic contamination,
consequences and remediation techniques: A review. Ecotoxicology and
Environmental Safety 112: 247-270.
Souri, Z., Karimi, N. & Sandalio, L.M. 2017. Arsenic hyperaccumulation
strategies: An overview. Frontiers in Cell and Developmental Biology 5:
67.
Stoeva, N. & Bineva, T. 2003. Oxidative changes and photosynthesis in
oat plants grown in As contaminated soil. Bulgarian Journal of Plant
Physiology 29: 87.
Tripathi, R.D., Srivastava, S., Mishra, S., Singh, N.,
Tuli, R., Gupta, D.K. & Maathuis, F.J.M. 2007. Arsenic hazards: Strategies
for tolerance and remediation by plants. Trends in Biotechnology 25:
158.
Wei, J.L., Lai, H.Y. & Chen, Z.S. 2012. Chelator
effects on bioconcentration and translocation of cadmium by hyperaccumulators, Tagetes
patula and Impatiens walleriana. Ecotoxicology and Environmental
Safety 84(4): 173-178.
Wellburn, A.R.
1994. The spectral determination of chlorophylls a and b, as well as total
carotenoids, using various solvents with spectrophotometers of different
resolution. Journal of Plant Physiology 144(3): 307-313.
Wiszniewska, A. 2021. Priming Strategies for
benefiting plant performance under toxic trace metal exposure. Plants 10(4):
623.
Yanitch, A., Brereton, N.J., Gonzalez, E., Labrecque,
M., Joly, S. & Pitre, F.E. 2017. Transcriptomic response of purple willow (Salix
purpurea) to arsenic stress. Frontiers in Plant Sciences 8: 1115.
Zvobgo, G., Sehar, S., Lwalaba, J., Mapodzeke, J.M.
& Zhang, G.P. 2018. The tolerance index and translocation factor were used
to identify the barley genotypes with high arsenic stress tolerance. Communications
in Soil Science and Plant Analysis 49(1): 50-62.
*Corresponding
author; email: irumayaz@cuiatd.edu.pk
|