Sains Malaysiana 51(9)(2022): 2843-2855

http://doi.org/10.17576/jsm-2022-5109-09

 

Extraction, Identification, and Quantification of Bioactive Compounds from Globe Artichoke (Cynara cardunculus var. scolymus)

(Pengekstrakan, Pengenalpastian dan Pengkuantitian Sebatian Bioaktif daripada Sayur Articok (Cynara cardunculus var. scolymus)

 

GAMAL S. EL-HADIDY1, WALAA ELMESHAD2, MOHAMMED ABDELGALEEL2 & MOSTAFA ALI2,*

 

1Department of Bread and Pasta, Food Technological Research Institute, Agricultural Research Centre, Egypt
2Department of Food Technology, Faculty of Agriculture, Kafrelsheikh University, Egypt

 

Received: 10 December 2021/Accepted: 31 March 2022

 

ABSTRACT

This study looked at the best conditions for extracting bioactive compounds from globe artichoke (Cynara cardunculus var. scolymus), such as total phenolics, flavonoids, ascorbic acid, and inulin. The obtained results showed that the optimum conditions for extraction of total phenolics and flavonoids from receptacle and bracts of artichoke, when applying maceration at room temperature, with 70% methanol for 4 h. Genstin was the major phenolic compound (57.86 and 25.6 mg/100 g DM) in artichoke receptacle and bracts, respectively. The highest content of ascorbic acid extracted from artichoke parts was obtained using 1% citric acid solution at 25 °C. In addition, the optimum conditions for extraction of inulin were autoclave at 120 °C for 15 min.  The most abundant essential amino acids were aromatic amino acids (phenylalanine and tyrosine), followed by valine, lysine, and leucine but sulfur amino acids were the limited amino acids found in the artichoke parts. Our results also suggested that bioactive compounds from artichoke extracts might have a promising future in the management of oxidative stress on the gastrointestinal tract and recommended as an attractive ingredient for developing functional food.

 

Keywords: Artichoke receptacle; ascorbic acid; bracts; flavonoids; inulin; phenolics

 

ABSTRAK

Kajian ini melihat kepada keadaan yang terbaik untuk mengekstrak sebatian bioaktif daripada sayur articok (Cynara cardunculus var. scolymus), seperti jumlah fenol, flavonoid, asid askorbik dan inulin. Keputusan yang diperoleh mendedahkan keadaan optimum untuk pengekstrakan jumlah fenol dan flavonoid daripada penyangga dan brakta articok, apabila menggunakan proses maserasi pada suhu bilik, dengan 70% metanol selama 4 jam. Genstin ialah sebatian fenol utama (57.86 dan 25.6 mg/100 g DM) masing-masing dalam penyangga dan brakta articok. Kandungan tertinggi asid askorbik yang diekstrak daripada bahagian articok telah diperoleh menggunakan 1% larutan asid sitrik pada suhu 25 °C. Di samping itu, keadaan optimum untuk pengekstrakan inulin ialah dengan menggunakan autoklaf pada suhu 120 °C selama 15 min. Asid amino perlu yang paling banyak ialah asid amino aromatik (fenilalanina dan tirosina), diikuti oleh valina, lisina dan leusina tetapi asid amino sulfur adalah terhad yang terdapat dalam bahagian articok. Keputusan kami juga mencadangkan bahawa sebatian bioaktif daripada ekstrak articok mungkin mempunyai masa depan yang cerah dalam pengurusan tekanan oksidatif pada saluran gastrousus dan disyorkan sebagai bahan yang menarik untuk membangunkan fungsian.

 

Kata kunci: Asid askorbik; brakta; fenol; flavonoid; inulin; penyangga articok

 

References

Abood, A. 2020. Microwave-assisted extraction of inulin from Jerusalem artichoke and partial acid hydrolyss. Iraqi Journal of Agricultural Sciences 51(1): 401-410.

Agbemafle, R., Obodai, E.A., Adukpo, G.E. & Amprako, D.N. 2012. Effects of boiling time on the concentrations of vitamin c and beta-carotene in five selected green vegetables consumed in Ghana. Advances in Applied Science Research 3(5): 2815-2820.

Aktay, G., Deliorman, D., Ergun, E., Ergun, F., Yeşilada, E. & Cevik, C. 2000. Hepatoprotective effects of Turkish folk remedies on experimental liver injury. Journal of Ethnopharmacology 73(1-2): 121-129.

Al-Subhi, F.M.M. 2020. Artichoke as a tool to natural antioxidants for lowering diabetics and hypolipidemia parameters. Alexandria Science Exchange Journal 11: 46-54.

Angelov, G., Georgieva, S., Boyadzhieva, S. & Boyadzhiev, L. 2015. Optimizing the extraction of globe artichoke wastes. Comptes rendus de l’Académie bulgare des Sciences 68(10).

Anwar, F., Kalsoom, U., Sultana, B., Mushtaq, M., Mehmood, T. & Arshad, H. 2013. Effect of drying method and extraction solvent on the total phenolics and antioxidant activity of cauliflower (Brassica oleracea L.) extracts. International Food Research Journal 20(2): 653.

Azzini, E., Bugianesi, R., Romano, F., Di Venere, D., Miccadei, S., Durazzo, A., Foddai, M., Catasta, G., Linsalata, V. & Maiani, G. 2007. Absorption and metabolism of bioactive molecules after oral consumption of cooked edible heads of Cynara scolymus L. (cultivar Violetto di Provenza) in human subjects: A pilot study. British Journal of Nutrition 97(5): 963-969.

Bach, V. 2012. Sensory quality and chemical composition of culinary preparations of root crops. PhD Thesis. Department of Food Science, Aarhus University (Unpublished).

Ceccarelli, N., Curadi, M., Picciarelli, P., Martelloni, L., Sbrana, C. & Giovannetti, M. 2010. Globe artichoke as a functional food. Mediterranean Journal of Nutrition and Metabolism 3(3): 197-201.

Chirinos, R., Rogez, H., Campos, D., Pedreschi, R. & Larondelle, Y. 2007. Optimization of extraction conditions of antioxidant phenolic compounds from mashua (Tropaeolum tuberosum Ruíz & Pavón) tubers. Separation and Purification Technology 55(2): 217-225.

Cho, S.S. & Samuel, P. 2009. Fiber Ingredients: Food Applications and Health Benefits. Boca Raton: CRC Press. pp. 1-516.

Clifford, M. & Brown, J. 2006. Dietary flavonoids and health-broadening the perspective. In Flavonoids: Chemistry, Biochemistry and Applications, edited by Anderson, O.M. & Markham, K.R. Florida: CRC Press. pp. 319-370.

Dashman, T., Blocker, D.E. & Baker, N. 1991. Laboratory Manual for Human Nutrition. Reading: Harwood Academic Publishers. pp. 1-237.

Duranti, M. & Cerletti, P. 1979. Amino acid composition of seed proteins of Lupinus albus. Journal of Agricultural and Food Chemistry 27(5): 977-978.

El Sohaimy, S. 2013. The effect of cooking on the chemical composition of artichoke (Cynara scolymus L.). African Journal of Food Science and Technology 4(8): 182-187.

El Sohaimy, S.A. 2014. Chemical composition, antioxidant and antimicrobial potential of artichoke. The Open Nutraceuticals Journal 7(1): 15-20.

Elzeny, T.R.S. 2020. Chemical and biological studies on chicory (Cichorium intybus L.). Faculty of Agriculture, Kafrelsheikh University.

FAO. 2007. Statistical Database. http://faostat.fao.org. Accessed on 11 November  2011.

FAO/WHO/UNU. 1985. Expert Consultation. Energy and Protein Requirements. Technical Report Series 724. Food and Agriculture Organization/World Health Organization/United Nations University (FAO/WHO/UNU).

Foury, C. 1989. Ressources génétiques et diversification de l'artichaut (Cynara scolymus L.). Acta Horticulturae 242: 155-166.

Frutos, M., Guilabert-Antón, L., Tomás-Bellido, A. & Hernández-Herrero, J. 2008. Effect of artichoke (Cynara scolymus L.) fiber on textural and sensory qualities of wheat bread. Food Science and Technology International 14(5_suppl): 49-55.

Gaafar, A., El-Din, M.S., Boudy, E. & El-Gazar, H. 2010. Extraction conditions of inulin from Jerusalem artichoke tubers and its effects on blood glucose and lipid profile in diabetic rats. Journal of American Science 6(5): 36-43.

Georgieva, S.S., Boyadzhieva, S.S. & Angelov, G. 2016. Intensification of extraction of bioactive substances from artichoke wastes. Bulgarian Chemical Communications 48(Special Issue E): 451-455.

Gomaa, M.A.H. 2010. Chemical and technological studies on some foods chemical, technological and biological studies on artichoke (Cynara scolymus L.). Kafrelsheikh University. Ph.D. Thesis (Unpublished).

Hammouda, F., Seif El-Nasr, M., Ismail, S. & Shahat, A. 1993. Quantitative determination of the active constituents in Egyptian cultivated Cynara scolymus. International Journal of Pharmacognosy 31(4): 299-304.

Hussein, L., El-Fouly, M., El-Baz, F. & Ghanem, S. 1999. Nutritional quality and the presence of anti-nutritional factors in leaf protein concentrates (LPC). International Journal of Food Sciences and Nutrition 50(5): 333-343.

Ierna, A. & Mauromicale, G. 2010. Cynara cardunculus L. genotypes as a crop for energy purposes in a Mediterranean environment. Biomass and Bioenergy 34(5): 754-760.

Juzyszyn, Z., Czerny, B., Pawlik, A. & Droździk, M. 2008. The effect of artichoke (Cynara scolymus L.) extract on ROS generation in HUVEC cells. Phytotherapy Research 22(9): 1159-1161.

Kelly, G. 2008. Inulin-type prebiotics--a review: Part 1. Alternative Medicine Review 13(4): 315-329.

Lattanzio, V., Kroon, P.A., Linsalata, V. & Cardinali, A. 2009. Globe artichoke: A functional food and source of nutraceutical ingredients. Journal of Functional Foods 1(2): 131-144.

Leroy, G., Grongnet, J.F., Mabeau, S., Corre, D.L. & Baty‐Julien, C. 2010. Changes in inulin and soluble sugar concentration in artichokes (Cynara scolymus L.) during storage. Journal of the Science of Food and Agriculture 90(7): 1203-1209.

Lombardo, S., Pandino, G., Mauromicale, G., Knödler, M., Carle, R. & Schieber, A. 2010. Influence of genotype, harvest time and plant part on polyphenolic composition of globe artichoke [Cynara cardunculus L. var. scolymus (L.) Fiori]. Food Chemistry 119(3): 1175-1181.

López-Molina, D., Navarro-Martínez, M.D., Rojas-Melgarejo, F., Hiner, A.N., Chazarra, S. & Rodríguez-López, J.N. 2005. Molecular properties and prebiotic effect of inulin obtained from artichoke (Cynara scolymus L.). Phytochemistry 66(12): 1476-1484.

Marzi, V., Lattanzio, V. & Vanadia, S. 1975. Il carciofo pianta medicinale.

Moharram, Y., Khalil, M. & Mostafa, M. 1981. Artichoke bracts (Cynara scolymus) as a source of protein. Monoufeia Journal of Agricultural Research 4: 273-283.

Negro, D., Montesano, V., Grieco, S., Crupi, P., Sarli, G., De Lisi, A. & Sonnante, G. 2012. Polyphenol compounds in artichoke plant tissues and varieties. Journal of Food Science 77(2): C244-C252.

O’Sullivan, L., Murphy, B., McLoughlin, P., Duggan, P., Lawlor, P.G., Hughes, H. & Gardiner, G.E. 2010. Prebiotics from marine macroalgae for human and animal health applications. Marine Drugs 8(7): 2038-2064.

Pandino, G., Lombardo, S., Mauromicale, G. & Williamson, G. 2011a. Phenolic acids and flavonoids in leaf and floral stem of cultivated and wild Cynara cardunculus L. genotypes. Food Chemistry 126(2): 417-422.

Pandino, G., Lombardo, S., Mauromicale, G. & Williamson, G. 2011b. Profile of polyphenols and phenolic acids in bracts and receptacles of globe artichoke (Cynara cardunculus var. scolymus) germplasm. Journal of Food Composition and Analysis 24(2): 148-153.

Pandino, G., Lombardo, S., Moglia, A., Portis, E., Lanteri, S. & Mauromicale, G. 2015. Leaf polyphenol profile and SSR-based fingerprinting of new segregant Cynara cardunculus genotypes. Frontiers in Plant Science 5: 800.

Pereira, A.P., Ferreira, I.C., Marcelino, F., Valentão, P., Andrade, P.B., Seabra, R., Estevinho, L., Bento, A. & Pereira, J.A. 2007. Phenolic compounds and antimicrobial activity of olive (Olea europaea L. Cv. Cobrançosa) leaves. Molecules 12(5): 1153-1162.

Prosky, L. & Hoebregs, H. 1999. Methods to determine food inulin and oligofructose. The Journal of Nutrition 129(7): 1418S-1423S.

Redondo-Cuenca, A., Herrera-Vázquez, S.E., Condezo-Hoyos, L., Gómez-Ordóñez, E. & Rupérez, P. 2021. Inulin extraction from common inulin-containing plant sources. Industrial Crops and Products 170: 113726.

Rottenberg, A., Zohary, D. & Nevo, E. 1996. Isozyme relationships between cultivated artichoke and the wild relatives. Genetic Resources and Crop Evolution 43(1): 59-62.

Ruiz-Cano, D., Pérez-Llamas, F., Frutos, M.J., Arnao, M.B., Espinosa, C., López-Jiménez, J.Á., Castillo, J. & Zamora, S. 2014. Chemical and functional properties of the different by-products of artichoke (Cynara scolymus L.) from industrial canning processing. Food Chemistry 160: 134-140.

Shen, Q., Dai, Z. & Lu, Y. 2010. Rapid determination of caffeoylquinic acid derivatives in Cynara scolymus L. by ultra‐fast liquid chromatography/tandem mass spectrometry based on a fused core C18 column. Journal of Separation Science 33(20): 3152-3158.

Sonnante, G., De Paolis, A. & Pignone, D. 2003. Relationships among artichoke cultivars and some related wild taxa based on AFLP markers. Plant Genetic Resources 1(2-3): 125-133.

Thaipong, K., Boonprakob, U., Crosby, K., Cisneros-Zevallos, L. & Byrne, D.H. 2006. Comparison of ABTS, DPPH, FRAP, and ORAC assays for estimating antioxidant activity from guava fruit extracts. Journal of Food Composition and Analysis 19(6-7): 669-675.

UNESCO. 2010. UNESCO Intangible Heritage Lists. United Nations Educational Scientific and Cultural Organization (UNESCO).

Vuong, Q.V., Hirun, S., Chuen, T.L., Goldsmith, C.D., Bowyer, M.C., Chalmers, A.C., Phillips, P.A. & Scarlett, C.J. 2014. Physicochemical composition, antioxidant and anti-proliferative capacity of a lilly pilly (Syzygium paniculatum) extract. Journal of Herbal Medicine 4(3): 134-140.

Xiao, Z.J., Zhu, D.H., Wang, X.H. & Zhang, M.D. 2013. Study on extraction process of inulin from Helianthus tuberosus. Modern Food Science and Technology 29: 315-318.

Zuorro, A., Maffei, G. & Lavecchia, R. 2014. Effect of solvent type and extraction conditions on the recovery of phenolic compounds from artichoke waste. Chemical Engineering 39: 463-468.

 

*Corresponding author; email: mostafa.ali@agr.kfs.edu.eg

 

 

 

 

previous