Sains Malaysiana 51(9)(2022): 2885-2895

http://doi.org/10.17576/jsm-2022-5109-12

 

Bamboo Fruit Storage Chamber (FSC) Equipped with Ethylene-Degrading Manganese Doped Titanium Oxide Nanomaterial as Storage for Banana (Musa acuminata)

(Ruang Penyimpanan Buah Buluh (FSC) Dilengkapi dengan Bahan Nano Titanium Oksida Didop Mangan Etilena sebagai Penyimpanan Pisang (Musa acuminata)

 

SOPHIE ANGGITTA RAHARJANI1, AFANDI FARIS AIMAN2, MEIRIFA RIZANTI2, DEVY NAVIANA3, KEVIN AMADEUS SUMENDAP1 & RIZKITA RACHMI ESYANTI1,3

 

1Department of Bioengineering, School of Life Sciences and Technology, Institut Teknologi Bandung, Indonesia

2Department of Biotechnology, School of Life Sciences and Technology, Institut Teknologi Bandung, Indonesia

3Department of Biology, School of Life Sciences and Technology, Institut Teknologi Bandung, Indonesia

 

Received: 17 July 2021/Accepted: 23 March 2022

 

Abstract

As a climacteric fruit, banana undergoes rapid ripening induced by the hormone ethylene, which is produced by autocatalytic reactions. Titanium dioxide is a photocatalytic compound with the ability to degrade ethylene to water and carbon dioxide. This compound can be used to control the concentration of ethylene inside storage chambers to delay the ripening process of bananas in storage. A passive modified atmosphere is another method to delay ripening by using storage spaces with limited air flow. This study attempts to investigate the performance of TiO2-Mn and bamboo fruit storage chamber (FSC) to delay the ripening of bananas by measuring characteristic physiological changes for 7 days which included ethylene accumulation in storage space, rate of ethylene production, rate of respiration, starch content, and soluble sugar content. The results show that the use of FSC in combination with TiO2-Mn can be used to delay the ripening of bananas. This study also investigated the effect of volumetric occupation to the efficacy of FSC by varying the number of banana fingers in storage and varying the volume of the chamber. While the volume of the FSC did not produce a significant difference in performance, the number of bananas stored in each FSC greatly influenced the delay-ripening ability of FSC with TiO2-Mn. At the end of the study, a profile plotted with MATLAB is presented to show the relationship of ethylene concentration in FSC in respect to storage time and number of fingers stored.

 

Keywords: Cavendish banana; delay ripening; ethylene; fruit storage chamber; TiO2

 

Abstrak

Sebagai buah klimakterik, pisang mengalami kematangan yang cepat disebabkan oleh hormon etilena. Etilena dihasilkan oleh pisang semasa masak melalui tindak balas autokatalitik. Titanium dioksida adalah sebatian fotokatalitik dengan keupayaan memecahkan etilena menjadi air dan karbon dioksida. Sebatian ini boleh digunakan untuk mengawal kepekatan etilena di dalam ruang simpanan untuk melambatkan proses masak pisang dalam simpanan. Atmosfera terubah suai pasif adalah kaedah lain untuk melambatkan pematangan pisang. Ia boleh dicapai dengan menyimpan pisang di dalam ruang yang mengehadkan aliran udara. Kajian ini cuba menyelidik kebolehan TiO2-Mn dan ruang penyimpanan buah atau (FSC) untuk melambatkan pematangan pisang dengan mengukur perubahan fisiologi selama 7 hari yang merangkumi kepekatan etilena dalam FSC, kadar pengeluaran etilena, kadar respirasi, kandungan kanji dan kandungan gula larut. Hasil kajian ini menunjukkan bahawa penggunaan FSC dalam gabungan dengan TiO2-Mn boleh digunakan untuk melambatkan pematangan pisang. Kajian ini juga menilai pengaruh ruang isi padu kepada kecekapan FSC dengan mempelbagaikan jumlah pisang dalam simpanan dan mempelbagaikan saiz ruang. Walaupun volum FSC tidak menghasilkan perbezaan hasil yang ketara, jumlah pisang yang disimpan dalam setiap FSC sangat mempengaruhi keupayaan FSC dengan TiO2-Mn dalam melambatkan pematangan pisang. Pada akhir kajian, profil yang diplot dengan MATLAB dibentangkan untuk menunjukkan hubungan kepekatan etilena dalam FSC berkenaan dengan masa penyimpanan dan bilangan pisang yang disimpan.

 

Kata kunci: Etilena; pisang Cavendish; melambatkan pematangan; ruang penyimpanan buah; TiO2

 

References

Abeles, F.B., Morgan, P.W. & Saltveit Jr., M.E. 1992. Ethylene in Plant Biology. San Diego: Academic Press, Inc.

Balthrop, J., Brand, B., Cowie, R.A., Danier, J., De Boever, J., de Jonge, L., Jackson, F., Makkar, H.P.S. & Piotrowski, C. 2011. Quality Assurance for Animal Feed Analysis Laboratories. Rome: FAO Animal Production and Health Manual.

Chesworth, J.M., Stuchbury, T. & Scaife, J.R. 1998. An Introduction to Agricultural Biochemistry.  London: Springer Netherlands.

Cordenunsi, B.R. & Lajolo, F.M. 1995. Starch breakdown during banana ripening: Sucrose synthase and sucrose phosphate synthase. Journal of Agricultural and Food Chemistry 43(2): 347-351.

Do Nascimento, J.R.O., Júnior, A.V., Bassinello, P.Z., Cordenunsi, B.R., Mainardi, J.A., Purgatto, E. & Lajolo, F.M. 2006. Beta-amylase expression and starch degradation during banana ripening. Postharvest Biology and Technology 40(1): 41-47.

Jedermann, R., Praeger, U., Geyer, M. & Lang, W. 2014. Remote quality monitoring in the banana chain. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 372: 20130303.

Imahori, Y., Yamamoto, K., Tanaka, H. & Bai, J. 2013. Residual effects of low oxygen storage of mature green fruit on ripening processes and ester biosynthesis during ripening in bananas. Postharvest Biology and Technology 77: 19-27.

Kemp, T.J. & McIntyre, R.A. 2006. Influence of transition metal-doped titanium (IV) dioxide on the photodegradation of polystyrene. Polymer Degradation and Stability 91(12): 3010-3019.

Klee, H.J., Clark, D.G. & Davies, P. 2004. Plant Hormones: Biosynthesis, Signal Transduction, Action! New York: Springer.

Kumar, S., Fedorov, A.G. & Gole, J.L. 2005. Photodegradation of ethylene using visible light responsive surfaces prepared from titania nanoparticle slurries. Applied Catalysis B: Environmental 57(2): 93-107.

Lee, T.G. 2010. Photocatalytic removal of gas-phase elemental mercury using TiO2. In Environmentally Benign Photocatalysts: Applications of Titanium Oxide-Based Materials, edited by Anpo, M. & Kamat, P.V. New York: Springer. pp. 437-448. 

Madan, A., Jain, R.K. & Nandane, A.S. 2014. Development of active modified atmosphere lab scale setup to study the effect on shelf-life of banana (var.‘Robusta’). Journal of Food Science & Technology 3(1): 1-10.

Marriott, J., Robinson, M. & Karikari, S.K. 1981. Starch and sugar transformation during the ripening of plantains and bananas. Journal of the Science of Food and Agriculture 32(10): 1021-1026.

Mauseth, J.D. 2011. Botany: An Introduction to Plant Biology. Sudbury, MA: Jones & Bartlett Publishers.

Mendoza, R., Castellanos, D.A., García, J.C., Vargas, J.C. & Herrera, A.O. 2016. Ethylene production, respiration and gas exchange modelling in modified atmosphere packaging for banana fruits. International Journal of Food Science & Technology 51(3): 777-788.

Momeni, M.M., Hakimian, M. & Kazempour, A. 2015. In-situ manganese doping of TiO2 nanostructures via single-step electrochemical anodizing of titanium in an electrolyte containing potassium permanganate: A good visible-light photocatalyst. Ceramics International 41(10): 13692-13701.

Ooraikul, B. & Stiles, M.E. 1991. Modified Atmosphere Packaging of Food. Chichester, West Sussex: Ellis Horwood Limited.

Paggi, M. & Spreen, T. 2003. Overview of the world banana market. In Banana Wars: The Anatomy of a Trade Dispute, edited by Josling, T.E. & Taylor, T.G. Wallingford, Oxon, UK: CABI. pp. 7-16.

Pesis, E., Arie, R.B., Feygenberg, O. & Villamizar, F. 2005. Ripening of ethylene-pretreated bananas is retarded using modified atmosphere and vacuum packaging. HortScience 40(3): 726-731.

Pratiwi, A.S., Dwivany, F.M., Larasati, D., Islamia, H.C. & Martien, R. 2015. Effect of chitosan coating and bamboo Fruit Storage Chamber (FSC) to expand banana shelf life. In AIP Conference Proceedings. AIP Publishing. 1677(1): 100005.

Sen, C., Mishra, H.N. & Srivastav, P.P. 2012. Modified atmosphere packaging and active packaging of banana (Musa spp.): A review on control of ripening and extension of shelf life. Journal of Stored Products and Postharvest Research 3(9): 122-132.

Siriwardana, H., Abeywickrama, K., Kannangara, S. & Jayawardena, B. 2018. Effect of spraying with Ocimum basilicum oil emulsion plus passive modified atmosphere packaging on shelf life of' “Embul” banana. In VIII International Postharvest Symposium: Enhancing Supply Chain and Consumer Benefits-Ethical and Technological Issues. ISHS Acta Horticulturae. 1194: 657-664.

Valero, D. & Serrano, M. 2010. Postharvest Biology and Technology for Preserving Fruit Quality. Boca Raton: CRC Press.

Wills, R.B. & Golding, J. 2016. Advances in Postharvest Fruit and Vegetable Technology. Boca Raton: CRC Press.

 

*Corresponding author; email: rizkita@sith.itb.ac.id

 

 

 

previous