Sains Malaysiana 51(9)(2022): 2897-2911

http://doi.org/10.17576/jsm-2022-5109-13

 

Profiling of Volatile Compounds in Beef, Rat, and Wild Boar Meat using SPME-GC/MS

(Pemprofilan Sebatian Meruap dalam Daging Lembu, Tikus dan Babi Hutan menggunakan SPME-GC/MS)

 

LIA AMALIA1,2,5, FERI KUSNANDAR1,4*, NANCY DEWI YULIANA1,4

& PURWANTININGSIH SUGITA3,4

 

1Department of Food Science and Technology, IPB University, Bogor 16680, Indonesia

2Djuanda University, Faculty of Halal Food Science, Department of Food Technology and Nutrition, Bogor 16720, Indonesia

3Department of Chemistry, IPB University, Bogor 16680, Indonesia

4Halal Science Center, IPB University, Bogor 16129, Indonesia

5The Assessment Institute for Foods, Drugs and Cosmetics, Indonesian Council of Ulama

Bogor, Indonesia

 

Received: 4 January 2022/Accepted: 27 March 2022

 

Abstract

The high beef price triggers adulteration of beef and other non-halal animal meat, such as wild boar and rats. An appropriate and effective analytical method is needed to differentiate halal and non-halal animal meat. The SPME/GC-MS method could authenticate meat based on specific volatile compounds in each meat. The objective of this study was to characterize volatile compounds and determine the volatile marker in raw beef, rat, wild boar meat, and their mixtures using SPME/GC-MS. The chemometrics of principal component analysis (PCA) and orthogonal projection to latent structure-discriminant analysis (OPLS-DA) classified raw beef, rat, wild boar, and their mixture. Correlation coefficients and VIP values were used to determine the volatile marker compounds for each meat in the OPLS-DA classes. The OPLS-DA results that the most robust marker in the beef class was dimethylfulvene, benzyl alcohol in the rat class, and 1,3,5-cycloheptatriene in the wild boar class. Furthermore, the most robust marker in the mixture of beef and rat class was benzaldehyde, 3-ethyl-, while 2,6-dimethyldecane was dominant in the mixture of beef and wild boar class. However, further study using larger number of samples which include commercial meat is required to confirm these results.

 

Keywords: Adulteration; chemometric; meat; OPLS-DA; volatile

 

Abstrak

Harga daging lembu yang tinggi mencetuskan pengadukan daging lembu dan daging haiwan lain yang tidak halal, seperti babi hutan dan tikus. Kaedah analisis yang sesuai dan berkesan diperlukan untuk membezakan daging haiwan yang halal dan tidak halal. Kaedah SPME/GC-MS boleh mengesahkan daging berdasarkan sebatian meruap tertentu dalam setiap daging. Objektif kajian ini adalah untuk mencirikan sebatian meruap dan menentukan penanda meruap dalam daging lembu mentah, tikus, daging babi hutan dan campurannya menggunakan SPME/GC-MS. Kemometrik analisis komponen utama (PCA) dan unjuran ortogon kepada analisis struktur-diskriminasi terpendam (OPLS-DA) mengelaskan daging mentah, tikus, babi hutan dan campurannya. Pekali korelasi dan nilai VIP digunakan untuk menentukan sebatian penanda yang tidak menentu bagi setiap daging dalam kelas OPLS-DA. Keputusan OPLS-DA bahawa penanda paling teguh dalam kelas daging lembu ialah dimetilfulvene, alkohol benzil dalam kelas tikus dan 1,3,5-cycloheptatriene dalam kelas babi hutan. Tambahan pula, penanda yang paling kukuh dalam campuran kelas daging lembu dan tikus ialah benzaldehid, 3-etil-, manakala 2,6-dimetildekana adalah dominan dalam campuran daging lembu dan kelas babi hutan. Walau bagaimanapun, kajian lanjut menggunakan bilangan sampel yang lebih besar termasuk daging komersial diperlukan untuk mengesahkan keputusan ini.

 

Kata kunci: Daging; kemometrik; meruap; OPLS-DA; pengadukan

 

References

Argemí-Armengol, I., Villalba, D., Tor, M., Pérez-Santaescolástica, C., Purriños, L., Lorenzo, J.M. & Álvarez-Rodríguez, J. 2019. The extent to which genetics and lean grade affect fatty acid profiles and volatile compounds in organic pork. PeerJ 7: e7322.

Ba, H.V., Oliveros, M.C., Ryu, K.S. & Hwang, I.H. 2010. Development of analysis condition and detection of volatile compounds from cooked Hanwoo beef by SPME-GC/MS analysis. Food Science of Animal Resources 30(1): 73-86.

Bailey, M.E. 1994. Maillard reactions and meat flavour development. In Flavour of Meat and Meat Products, edited by Shahidi, F. New York: Springer pp. 153-173.

Balasubramanian, S. & Panigrahi, S. 2011. Solid-phase microextraction (SPME) techniques for quality characterization of food products: A review. Food and Bioprocess Technology 4: 1-26.

Bianchi, F., Careri, M., Mangia, A. & Musci, M. 2007. Retention indices in the analysis of food aroma volatile compounds in temperature‐programmed gas chromatography: Database creation and evaluation of precision and robustness. Journal of Separation Science 30(4): 563-572.

Bueno, M., Resconi, V.C., Campo, M.M., Ferreira, V. & Escudero, A. 2019. Development of a robust HS-SPME-GC-MS method for the analysis of solid food samples. Analysis of volatile compounds in fresh raw beef of differing lipid oxidation degrees. Food Chemistry 281: 49-56.

Bylesjö, M., Rantalainen, M., Cloarec, O., Nicholson, J.K., Holmes, E. & Trygg, J. 2006. OPLS discriminant analysis: Combining the strengths of PLS‐DA and SIMCA classification. Journal of Chemometrics: A Journal of the Chemometrics Society 20(8‐10): 341-351.

Cavalli, J.F., Fernandez, X., Lizzani-Cuvelier, L. & Loiseau, A.M. 2003. Comparison of static headspace, headspace solid phase microextraction, headspace sorptive extraction, and direct thermal desorption techniques on chemical composition of French olive oils. Journal of Agricultural and Food Chemistry 51(26): 7709-7716.

Chen, G., Su, Y., He, L., Wu, H. & Shui, S. 2019. Analysis of volatile compounds in pork from four different pig breeds using headspace solid‐phase micro‐extraction/gas chromatography–mass spectrometry. Food Science & Nutrition 7(4): 1261-1273.

Ellis, D.I., Muhamadali, H., Allen, D.P., Elliott, C.T. & Goodacre, R. 2016. A flavour of omics approaches for the detection of food fraud. Current Opinion in Food Science 10: 7-15.

Eriksson, L., Byrne, T., Johansson, E., Trygg, J. & Vikström, C. 2013. Multi-and Megavariate Data Analysis Basic Principles and Applications. 3rd ed. Sweden: Umetrics Academy.

Eriksson, L., Trygg, J. & Wold, S. 2008. CV‐ANOVA for significance testing of PLS and OPLS® models. Journal of Chemometrics: A Journal of the Chemometrics Society 22(11‐12): 594-600.

Estévez, M., Morcuende, D., Ventanas, S. & Cava, R. 2003. Analysis of volatiles in meat from Iberian pigs and lean pigs after refrigeration and cooking by using SPME-GC-MS. Journal of Agricultural and Food Chemistry 51(11): 3429-3435.

Garcia, A. & Barbas, C. 2011. Gas chromatography-mass spectrometry (GC-MS)-based metabolomics. In Metabolic Profiling, edited by Walker, J.M. United States: Humana Press. pp. 191-204.

Kataoka, H. 2002. Automated sample preparation using in-tube solid-phase microextraction and its application–A review. Analytical and Bioanalytical Chemistry 373(1): 31-45.

Kilgannon, A.K., Holman, B.W., Frank, D.C., Mawson, A.J., Collins, D. & Hopkins, D.L. 2020. Temperature-time combination effects on aged beef volatile profiles and their relationship to sensory attributes. Meat Science 168: 108193.

Kosowska, M., Majcher, M.A. & Fortuna, T. 2017. Volatile compounds in meat and meat products. Food Science and Technology 37(1): 1-7.

Lammers, M., Dietze, K. & Ternes, W. 2009. A comparison of the volatile profiles of frying European and Australian wild boar meat with industrial genotype pork by dynamic headspace‐GC/MS analysis. Journal of Muscle Foods 20(3): 255-274.

Lytou, A.E., Panagou, E.Z. & Nychas, G.J.E. 2019. Volatilomics for food quality and authentication. Current Opinion in Food Science 28: 88-95.

Muhamad, N.H.N., Rafix, M.I.S.M., Mohammad, S.A., Zain, N.M., Yaacob, A.C. & Ahmad, S.M.S. 2018. Traceability and authenticity in global halal meat supply chain. International Journal of Islamic Studies 12(2): 1-12.

Nakyinsige, K., Man, Y.B.C. & Sazili, A.Q. 2012. Halal authenticity issues in meat and meat products. Meat Science 91(3): 207-214.

Nejadgholi, I. & Bolic, M. 2015. A comparative study of PCA, SIMCA and Cole model for classification of bioimpedance spectroscopy measurements. Computers in Biology and Medicine 63: 42-51.

Paczkowski, S., Maibaum, F., Paczkowska, M. & Schütz, S. 2012. Decaying mouse volatiles perceived by Calliphora vicina Rob.‐Desv. Journal of Forensic Sciences 57(6): 1497-1506.

Pavlidis, D.E., Mallouchos, A., Ercolini, D., Panagou, E.Z. & Nychas, G.J.E. 2019. A volatilomics approach for off-line discrimination of minced beef and pork meat and their admixture using HS-SPME GC/MS in tandem with multivariate data analysis. Meat Science 151: 43-53.

Peng, B., Li, H. & Peng, X.X. 2015. Functional metabolomics: From biomarker discovery to metabolome reprogramming. Protein & Cell 6(9): 628-637.

Pranata, A.W., Yuliana, N.D., Amalia, L. & Darmawan, N. 2021. Volatilomics for halal and non-halal meatball authentication using solid-phase microextraction–gas chromatography–mass spectrometry. Arabian Journal of Chemistry 14(5): 103146.

Rahmania, H. & Rohman, A. 2015. The employment of FTIR spectroscopy in combination with chemometrics for analysis of rat meat in meatball formulation. Meat Science 100:  301-305.

Ramírez, M.R., Estévez, M., Morcuende, D. & Cava, R. 2004. Effect of the type of frying culinary fat on volatile compounds isolated in fried pork loin chops by using SPME-GC-MS. Journal of Agricultural and Food Chemistry 52(25): 7637-7643.

Ramírez, M.R., Estévez, M., Morcuende, D. & Cava, R. 2004. Effect of the type of frying culinary fat on volatile compounds isolated in fried pork loin chops by using SPME-GC-MS. Journal of Agricultural and Food Chemistry 52(25): 7637-7643.

Sales, J. & Kotrba, R. 2013. Meat from wild boar (Sus scrofa L.): A review. Meat Science 94(2): 187-201.

Shahidi, F., Rubin, L.J., D'Souza, L.A., Teranishi, R. & Buttery, R.G. 1986. Meat flavour volatiles: A review of the composition, techniques of analysis, and sensory evaluation. Critical Reviews in Food Science & Nutrition 24(2): 141-243.

Shiomi, Y., Nishiumi, S., Ooi, M., Hatano, N., Shinohara, M., Yoshie, T., Kondo, Y., Furumatsu, K., Shiomi, H., Kutsumi, H. & Azuma, T. 2011. GCMS-based metabolomic study in mice with colitis induced by dextran sulfate sodium. Inflammatory Bowel Diseases 17(11): 2261-2274.

Soncin, S., Chiesa, L.M., Cantoni, C. & Biondi, P.A. 2007. Preliminary study of the volatile fraction in the raw meat of pork, duck and goose. Journal of Food Composition and Analysis 20(5): 436-439.

Song, X., Canellas, E. & Nerin, C. 2021. Screening of volatile decay markers of minced pork by headspace-solid phase microextraction–gas chromatography–mass spectrometry and chemometrics. Food Chemistry 342: 128341.

Spietelun, A., Pilarczyk, M., Kloskowski, A. & Namieśnik, J. 2010. Current trends in solid-phase microextraction (SPME) fibre coatings. Chemical Society Reviews 39(11): 4524-4537.

Sun, Y., Fu, M., Li, Z. & Peng, X. 2018. Evaluation of freshness in determination of volatile organic compounds released from pork by HS-SPME-GC-MS. Food Analytical Methods 11(5): 1321-1329.

Tian, X., Wang, J. & Cui, S. 2013. Analysis of pork adulteration in minced mutton using electronic nose of metal oxide sensors. Journal of Food Engineering 119(4): 744-749.

Trivedi, D.K. & Iles, R.K. 2012. The application of SIMCA P+ in shotgun metabolomics analysis of ZIC HILIC-MS spectra of human urine - experience with the Shimadzu.
IT-TOF and profiling solutions data extraction Software. Chromatography Separation Techniques 3: 6.

Wang, X., Zhu, L., Han, Y., Xu, L., Jin, J., Cai, Y. & Wang, H. 2018. Analysis of volatile compounds between raw and cooked beef by HS‐SPME–GC–MS. Journal of Food Processing and Preservation 42(2): e13503.

Worley, B. & Powers, R. 2013. Multivariate analysis in metabolomics. Current Metabolomics 1(1): 92-107.

Worley, B. & Powers, R. 2016. PCA as a practical indicator of OPLS-DA model reliability. Current Metabolomics 4(2): 97-103.

Xie, J., Sun, B., Zheng, F. & Wang, S. 2008. Volatile flavour constituents in roasted pork of Mini-pig. Food Chemistry 109(3): 506-514.

Yang, J., Zhao, X., Lu, X., Lin, X. & Xu, G. 2015. A data preprocessing strategy for metabolomics to reduce the mask effect in data analysis. Frontiers in Molecular Biosciences 2: 4.

Yip, L.Y. & Chan, E.C.Y. 2013. Gas chromatography/mass spectrometry-based metabonomics. In Proteomic and Metabolomic Approaches to Biomarker Discovery, edited by  Issaq, H.J. & Veenstra, T.D. 2nd ed. Cambridge: Academic Press. pp. 133-147.

Zellner, B.D.A., Bicchi, C., Dugo, P., Rubiolo, P., Dugo, G. & Mondello, L. 2008. Linear retention indices in gas chromatographic analysis: A review. Flavour and Fragrance Journal 23(5): 297-314.

Zhang, Q., Li, H., Zhang, Z., Yang, F. & Chen, J. 2015. Serum metabolites as potential biomarkers for diagnosis of knee osteoarthritis. Disease Markers 2015: 684794.

 

*Corresponding author; email: fkusnandar@apps.ipb.ac.id

 

 

 

 

previous