Sains Malaysiana 51(9)(2022):
2897-2911
http://doi.org/10.17576/jsm-2022-5109-13
Profiling
of Volatile Compounds in Beef, Rat, and Wild Boar Meat using SPME-GC/MS
(Pemprofilan Sebatian Meruap dalam
Daging Lembu, Tikus dan Babi Hutan menggunakan SPME-GC/MS)
LIA AMALIA1,2,5, FERI KUSNANDAR1,4*, NANCY DEWI YULIANA1,4
& PURWANTININGSIH SUGITA3,4
1Department of Food
Science and Technology, IPB University, Bogor 16680, Indonesia
2Djuanda University,
Faculty of Halal Food Science, Department of Food Technology and Nutrition,
Bogor 16720, Indonesia
3Department of Chemistry,
IPB University, Bogor 16680, Indonesia
4Halal Science Center,
IPB University, Bogor 16129, Indonesia
5The Assessment Institute
for Foods, Drugs and Cosmetics, Indonesian Council of Ulama
Bogor, Indonesia
Received: 4 January 2022/Accepted: 27 March 2022
Abstract
The high beef price triggers adulteration of beef and other non-halal animal meat, such as
wild boar and rats. An appropriate and effective analytical method is needed to differentiate halal and
non-halal animal meat. The
SPME/GC-MS method could authenticate meat based on specific volatile compounds in each meat. The objective
of this study was to characterize volatile compounds and determine the volatile marker in
raw beef, rat, wild boar meat, and their mixtures using SPME/GC-MS. The
chemometrics of principal component analysis (PCA) and orthogonal projection to
latent structure-discriminant analysis (OPLS-DA) classified raw beef, rat, wild
boar, and their mixture. Correlation coefficients and VIP values were used to
determine the volatile marker compounds for each meat in the OPLS-DA classes. The OPLS-DA results
that the most
robust marker in the beef class was dimethylfulvene, benzyl
alcohol in the rat
class, and 1,3,5-cycloheptatriene in the wild boar class. Furthermore, the most
robust marker in the mixture
of beef and rat class was benzaldehyde, 3-ethyl-, while 2,6-dimethyldecane was dominant in the mixture of beef and
wild boar class. However,
further study using larger number of samples which include commercial meat is
required to confirm these results.
Keywords: Adulteration;
chemometric; meat; OPLS-DA; volatile
Abstrak
Harga
daging lembu yang tinggi mencetuskan pengadukan daging lembu dan daging haiwan
lain yang tidak halal, seperti babi hutan dan tikus. Kaedah analisis yang
sesuai dan berkesan diperlukan untuk membezakan daging haiwan yang halal dan
tidak halal. Kaedah SPME/GC-MS boleh mengesahkan daging berdasarkan sebatian
meruap tertentu dalam setiap daging. Objektif kajian ini adalah untuk
mencirikan sebatian meruap dan menentukan penanda meruap dalam daging lembu
mentah, tikus, daging babi hutan dan campurannya menggunakan SPME/GC-MS.
Kemometrik analisis komponen utama (PCA) dan unjuran ortogon kepada analisis
struktur-diskriminasi terpendam (OPLS-DA) mengelaskan daging mentah, tikus,
babi hutan dan campurannya. Pekali korelasi dan nilai VIP digunakan untuk
menentukan sebatian penanda yang tidak menentu bagi setiap daging dalam kelas
OPLS-DA. Keputusan OPLS-DA bahawa penanda paling teguh dalam kelas daging lembu
ialah dimetilfulvene, alkohol benzil dalam kelas tikus dan
1,3,5-cycloheptatriene dalam kelas babi hutan. Tambahan pula, penanda yang
paling kukuh dalam campuran kelas daging lembu dan tikus ialah benzaldehid,
3-etil-, manakala 2,6-dimetildekana adalah dominan dalam campuran daging lembu
dan kelas babi hutan. Walau bagaimanapun, kajian lanjut menggunakan bilangan
sampel yang lebih besar termasuk daging komersial diperlukan untuk mengesahkan
keputusan ini.
Kata kunci: Daging; kemometrik; meruap; OPLS-DA; pengadukan
References
Argemí-Armengol, I., Villalba, D., Tor, M., Pérez-Santaescolástica, C.,
Purriños, L., Lorenzo, J.M. & Álvarez-Rodríguez, J. 2019. The extent to
which genetics and lean grade affect fatty acid profiles and volatile compounds
in organic pork. PeerJ 7: e7322.
Ba, H.V.,
Oliveros, M.C., Ryu, K.S. & Hwang, I.H. 2010. Development of analysis
condition and detection of volatile compounds from cooked Hanwoo beef by
SPME-GC/MS analysis. Food Science of Animal Resources 30(1): 73-86.
Bailey, M.E. 1994. Maillard reactions and meat flavour development. In Flavour
of Meat and Meat Products, edited by Shahidi, F. New York: Springer pp.
153-173.
Balasubramanian, S. & Panigrahi, S. 2011. Solid-phase
microextraction (SPME) techniques for quality characterization of food products:
A review. Food and Bioprocess Technology 4: 1-26.
Bianchi, F.,
Careri, M., Mangia, A. & Musci, M.
2007. Retention indices in the analysis of food aroma volatile compounds in
temperature‐programmed gas chromatography: Database creation and
evaluation of precision and robustness. Journal of Separation Science 30(4): 563-572.
Bueno, M., Resconi, V.C., Campo, M.M., Ferreira, V. & Escudero, A.
2019. Development of a robust HS-SPME-GC-MS method for the analysis of solid
food samples. Analysis of volatile compounds in fresh raw beef of differing
lipid oxidation degrees. Food Chemistry 281: 49-56.
Bylesjö, M., Rantalainen, M., Cloarec, O., Nicholson, J.K., Holmes, E.
& Trygg, J. 2006. OPLS discriminant analysis: Combining the strengths of
PLS‐DA and SIMCA classification. Journal of Chemometrics: A
Journal of the Chemometrics Society 20(8‐10): 341-351.
Cavalli, J.F., Fernandez, X., Lizzani-Cuvelier, L. & Loiseau, A.M.
2003. Comparison of static headspace, headspace solid phase microextraction,
headspace sorptive extraction, and direct thermal desorption techniques on
chemical composition of French olive oils. Journal of Agricultural and Food
Chemistry 51(26): 7709-7716.
Chen, G., Su, Y., He, L., Wu, H. & Shui, S. 2019. Analysis of volatile
compounds in pork from four different pig breeds using headspace
solid‐phase micro‐extraction/gas chromatography–mass spectrometry. Food
Science & Nutrition 7(4): 1261-1273.
Ellis, D.I., Muhamadali, H., Allen, D.P., Elliott, C.T. & Goodacre, R.
2016. A flavour of omics approaches for the detection of food fraud. Current
Opinion in Food Science 10: 7-15.
Eriksson, L., Byrne, T., Johansson, E., Trygg, J. & Vikström, C. 2013. Multi-and Megavariate Data Analysis Basic Principles and Applications. 3rd ed. Sweden: Umetrics Academy.
Eriksson,
L., Trygg, J. & Wold, S. 2008. CV‐ANOVA for significance testing of
PLS and OPLS® models. Journal of Chemometrics: A Journal of the Chemometrics
Society 22(11‐12): 594-600.
Estévez, M., Morcuende, D., Ventanas, S. & Cava, R. 2003. Analysis of
volatiles in meat from Iberian pigs and lean pigs after refrigeration and
cooking by using SPME-GC-MS. Journal of Agricultural and Food Chemistry 51(11): 3429-3435.
Garcia, A. & Barbas, C. 2011. Gas chromatography-mass spectrometry
(GC-MS)-based metabolomics. In Metabolic Profiling, edited by Walker,
J.M. United States: Humana Press. pp. 191-204.
Kataoka, H. 2002. Automated sample preparation using in-tube solid-phase
microextraction and its application–A review. Analytical and Bioanalytical
Chemistry 373(1): 31-45.
Kilgannon, A.K., Holman, B.W., Frank, D.C., Mawson, A.J., Collins, D.
& Hopkins, D.L. 2020. Temperature-time combination effects on aged beef
volatile profiles and their relationship to sensory attributes. Meat Science 168: 108193.
Kosowska, M., Majcher, M.A. & Fortuna, T. 2017. Volatile compounds in
meat and meat products. Food Science and Technology 37(1): 1-7.
Lammers, M., Dietze, K. & Ternes, W. 2009. A comparison of the
volatile profiles of frying European and Australian wild boar meat with
industrial genotype pork by dynamic headspace‐GC/MS analysis. Journal
of Muscle Foods 20(3): 255-274.
Lytou, A.E., Panagou, E.Z. & Nychas, G.J.E. 2019. Volatilomics for
food quality and authentication. Current Opinion in Food Science 28:
88-95.
Muhamad, N.H.N., Rafix, M.I.S.M., Mohammad, S.A., Zain, N.M., Yaacob, A.C.
& Ahmad, S.M.S. 2018. Traceability and authenticity in global halal meat
supply chain. International Journal of Islamic Studies 12(2): 1-12.
Nakyinsige, K., Man, Y.B.C. & Sazili, A.Q. 2012. Halal authenticity
issues in meat and meat products. Meat Science 91(3): 207-214.
Nejadgholi, I. & Bolic, M. 2015. A comparative study of PCA, SIMCA and
Cole model for classification of bioimpedance spectroscopy measurements. Computers
in Biology and Medicine 63: 42-51.
Paczkowski, S., Maibaum, F., Paczkowska, M. & Schütz, S. 2012.
Decaying mouse volatiles perceived by Calliphora vicina Rob.‐Desv. Journal
of Forensic Sciences 57(6): 1497-1506.
Pavlidis, D.E., Mallouchos, A., Ercolini, D., Panagou, E.Z. & Nychas,
G.J.E. 2019. A volatilomics approach for off-line discrimination of minced beef
and pork meat and their admixture using HS-SPME GC/MS in tandem with multivariate
data analysis. Meat Science 151: 43-53.
Peng, B., Li, H. & Peng, X.X. 2015. Functional metabolomics: From
biomarker discovery to metabolome reprogramming. Protein & Cell 6(9): 628-637.
Pranata,
A.W., Yuliana, N.D., Amalia, L. & Darmawan, N. 2021. Volatilomics for halal and non-halal meatball authentication using solid-phase
microextraction–gas chromatography–mass spectrometry. Arabian Journal of
Chemistry 14(5): 103146.
Rahmania, H.
& Rohman, A. 2015. The employment of FTIR spectroscopy in combination with
chemometrics for analysis of rat meat in meatball formulation. Meat Science 100: 301-305.
Ramírez, M.R., Estévez, M., Morcuende, D. & Cava, R. 2004. Effect of
the type of frying culinary fat on volatile compounds isolated in fried pork
loin chops by using SPME-GC-MS. Journal of Agricultural and Food Chemistry 52(25): 7637-7643.
Ramírez, M.R., Estévez, M., Morcuende, D. & Cava, R. 2004. Effect of
the type of frying culinary fat on volatile compounds isolated in fried pork
loin chops by using SPME-GC-MS. Journal of Agricultural and Food Chemistry 52(25): 7637-7643.
Sales, J. & Kotrba, R. 2013. Meat from wild boar (Sus scrofa L.): A review. Meat Science 94(2): 187-201.
Shahidi, F., Rubin, L.J., D'Souza, L.A., Teranishi, R. & Buttery, R.G.
1986. Meat flavour volatiles: A review of the composition, techniques of
analysis, and sensory evaluation. Critical Reviews in Food Science &
Nutrition 24(2): 141-243.
Shiomi, Y., Nishiumi, S., Ooi, M., Hatano, N., Shinohara, M., Yoshie, T.,
Kondo, Y., Furumatsu, K., Shiomi, H., Kutsumi, H. & Azuma, T. 2011.
GCMS-based metabolomic study in mice with colitis induced by dextran sulfate
sodium. Inflammatory Bowel Diseases 17(11): 2261-2274.
Soncin, S., Chiesa, L.M., Cantoni, C. & Biondi, P.A. 2007. Preliminary
study of the volatile fraction in the raw meat of pork, duck and goose. Journal
of Food Composition and Analysis 20(5): 436-439.
Song, X., Canellas, E. & Nerin, C. 2021. Screening of volatile decay
markers of minced pork by headspace-solid phase microextraction–gas
chromatography–mass spectrometry and chemometrics. Food Chemistry 342:
128341.
Spietelun, A., Pilarczyk, M., Kloskowski, A. & Namieśnik, J.
2010. Current trends in solid-phase microextraction (SPME) fibre coatings. Chemical
Society Reviews 39(11): 4524-4537.
Sun, Y., Fu, M., Li, Z. & Peng, X. 2018. Evaluation of freshness in
determination of volatile organic compounds released from pork by
HS-SPME-GC-MS. Food Analytical Methods 11(5): 1321-1329.
Tian, X.,
Wang, J. & Cui, S. 2013. Analysis of pork adulteration in minced mutton
using electronic nose of metal oxide sensors. Journal of Food Engineering 119(4): 744-749.
Trivedi, D.K. & Iles, R.K. 2012. The application of SIMCA
P+ in shotgun metabolomics analysis of ZIC HILIC-MS spectra of human urine -
experience with the Shimadzu.
IT-TOF and profiling solutions data extraction
Software. Chromatography
Separation Techniques 3: 6.
Wang, X., Zhu, L., Han, Y., Xu, L., Jin, J., Cai, Y. & Wang, H. 2018.
Analysis of volatile compounds between raw and cooked beef by
HS‐SPME–GC–MS. Journal of Food Processing and Preservation 42(2):
e13503.
Worley, B. & Powers, R. 2013. Multivariate analysis in metabolomics. Current
Metabolomics 1(1): 92-107.
Worley, B. & Powers, R. 2016. PCA as a practical indicator of OPLS-DA
model reliability. Current Metabolomics 4(2): 97-103.
Xie, J., Sun, B., Zheng, F. & Wang, S. 2008. Volatile flavour
constituents in roasted pork of Mini-pig. Food Chemistry 109(3):
506-514.
Yang, J., Zhao, X., Lu, X., Lin, X. & Xu, G. 2015. A data
preprocessing strategy for metabolomics to reduce the mask effect in data
analysis. Frontiers in Molecular Biosciences 2: 4.
Yip, L.Y. & Chan, E.C.Y. 2013. Gas chromatography/mass
spectrometry-based metabonomics. In Proteomic and Metabolomic Approaches to
Biomarker Discovery, edited by Issaq, H.J. & Veenstra, T.D. 2nd ed. Cambridge: Academic Press. pp.
133-147.
Zellner,
B.D.A., Bicchi, C., Dugo, P., Rubiolo, P., Dugo, G. & Mondello, L. 2008.
Linear retention indices in gas chromatographic analysis: A review. Flavour
and Fragrance Journal 23(5): 297-314.
Zhang, Q.,
Li, H., Zhang, Z., Yang, F. & Chen, J. 2015. Serum metabolites as potential
biomarkers for diagnosis of knee osteoarthritis. Disease Markers 2015:
684794.
*Corresponding author;
email: fkusnandar@apps.ipb.ac.id
|