Sains Malaysiana 51(9)(2022):
2913-2924
http://doi.org/10.17576/jsm-2022-5109-14
A Simple Potentiometric Biosensor Based on Carboxylesterase for the
Analysis of Aspartame
(Biosensor Potensiometrik Mudah Berasaskan
Karboksilesterase untuk Analisis Aspartam)
NOOR IZAANIN RAMLI1, LEE YOOK HENG1,2,* & LING LING TAN2
1Jabatan Sains Kimia, Fakulti Sains dan Teknologi, Universiti Kebangsaan Malaysia,
43600 UKM Bangi, Selangor Darul Ehsan, Malaysia
2Pusat
Kajian Bencana Asia Tenggara (SEADPRI-UKM), Institut Alam Sekitar dan Pembangunan (LESTARI), Universiti Kebangsaan Malaysia, 43600 UKM Bangi,
Selangor Darul Ehsan, Malaysia
Received: 1 December 2021/Accepted: 13 March 2022
Abstract
A
potentiometric aspartame biosensor was fabricated by simply depositing the carboxylesterase
(CES)-bonded poly(n-butyl acrylate-n-acryloxysuccimide) [CES-poly(nBA-NAS)]
microspheres on a Ag/AgCl screen-printed pH selective electrode. The pH
transducer was made from non-plasticized polyacrylate membrane containing a
hydrogen ionophore and lipophilic salt. The immobilized CES enzyme catalyzed the enzymatic hydrolysis of aspartame to L-aspartic
acid (L-Asp), L-phenylalanine and methanol. Potentiometric determination of
aspartame concentration was performed by quantifying the hydrogen ion
concentration produced from L-Asp. The potentiometric determination of
aspartame exhibited good selectivity with near Nernstian response. The
sensitivity of the biosensor was closed to the Nernstian value, i.e., 50-52 mV
decade-1 with a dynamic linear response range from 10-5 to 10-2 M and detection limit approaching 10-6 M. The
aspartame biosensor demonstrated good repeatability and reproducibility with
relative standard deviation (RSD) of 1.9% and 1.6%, respectively (n=3).
The potentiometric aspartame biosensor was demonstrated to be reliable for
determining aspartame content in sweetener samples and was comparable to the
conventional high-performance liquid chromatography (HPLC) method for aspartame
analysis.
Keywords: Acrylic microspheres; apartamepotentiometric;
Nernst; screen-printed electrode
Abstrak
Biosensor aspartam
potensiometri telah dibangunkan dengan hanya meletakkan mikrosfera poli(n-butil
akrilat-n-akriloksisuksimida) terikat karboksilesterase (CES) [CES-poli(nBA-NAS)]
pada elektrod terpilih pH cetakan skrin Ag/AgCl. Transduser pH disediakan
daripada membran poliakrilat bukan plastik yang mengandungi ionofor hidrogen
dan garam lipofilik. Enzim CES terpegun memangkinkan hidrolisis enzimatik
aspartam kepada asid L-aspartik (L-Asp), L-phenylalanine dan metanol. Penentuan
potensiometrik kepekatan aspartam dilakukan dengan mengukur kepekatan ion
hidrogen yang dihasilkan daripada L-Asp. Penentuan potensiometrik aspartam
menunjukkan kepilihan yang baik dengan rangsangan Nernstian yang hampir.
Kepekaan biosensor adalah berhampiran dengan nilai Nernstian, iaitu 50-52
mV dekad-1 dengan julat tindak balas linear dinamik dari 10-5 hingga 10-2 M dan had pengesanan menghampiri 10-6 M.
Biosensor aspartam menunjukkan kebolehulangan dan kebolehasilan yang baik
dengan sisihan piawai relatif (RSD) masing-masingnnya sebanyak 1.9% dan 1.6% (n=3).
Biosensor aspartam potensiometrik telah ditentusahkan dalam penentukan
kandungan aspartam dalam sampel pemanis dan setanding dengan kaedah kovensional
kromatografi cecair berprestasi tinggi (HPLC) untuk analisis aspartam.
Kata kunci: Aspartam; elektrod bercetak skrin; mikrosfera akrilik; Nernst;
potensiometrik
References
Aldewachi, H., Chalati, T., Woodroofe, M.N., Bricklebank, N. &
Gardiner, P. 2017. Gold nanoparticle-based colorimetric biosensors. Nanoscale 10(1): 18-33.
Campanella, L., Aturki, Z., Sammartino, M.P. &
Tomassetti, M. 1995. Aspartate analysis in formulations using a new enzyme
sensor. Journal of Pharmaceutical and Biomedical Analysis 13(4-5):
439-447.
Chen, Q.C. & Wang, J. 2001. Simultaneous
determination of artificial sweeteners, preservatives, caffeine, theobromine
and theophylline in food and pharmaceutical preparations by ion chromatography. Journal of Chromatography A 937(1-2): 57-64.
Chou, S.F. 1996. Amperometric biosensor for the
determination of the artificial sweetener aspartame with an immobilized
bienzyme system. Analyst 121(1): 71-73.
Choudhary,
A.K. & Pretorius, E. 2017. Revisiting the safety of aspartame. Nutrition
Reviews 75(9): 718-730.
Czarnecka, K., Pilarz, A., Rogut, A., Maj, P., Szymańska, J., Olejnik,
Ł. & Szymański, P. 2021. Aspartame - true or false? Narrative
review of safety analysis of general use in products. Nutrients 13(6):
1957.
Demiralay, E.C., Özkan, G. & Guzel-Seydim, Z. 2006. Isocratic
separation of some food additives by reversed-phase liquid chromatography. Chromatographia 63(1): 91-96.
Fatibello-Filho, O., Marcolino-Junior, L.H. & Pereira, A.V. 1999.
Solid-phase reactor with copper(II) phosphate for flow injection
spectrophotometric determination of aspartame in tabletop sweeteners. Analytica
Chimica Acta 384(2): 167-174.
Fazial, F.F. & Tan, L.L. 2021. Phenylalanine-responsive fluorescent biosensor based on
graphene oxide-chitosan nanocomposites catalytic film for non-destructive fish
freshness grading. Food Control 125: 107995.
Fazial, F.F., Tan, L.L. & Zubairi, S.I. 2018. Bienzymatic
creatine biosensor based on reflectance measurement for real-time monitoring of
fish freshness. Sensors and Actuators B: Chemical 269: 36-45.
Hassan, R.A., Heng, L.Y., Ahmad, A. & Tan, L.L. 2019. Rapid
determination of kappa-carrageenan using a biosensor from immobilized Pseudomonas
carrageenovora cells. PLoS ONE 14(4): e0214580.
Kim, M-H., Lee, D-Y. & Ahn, J-H. 2020. A study on the analysis of
artificial sweeteners in processed foods including emulsified foods by
HPLC-DAD. Analytical Science and Technology 33(5): 209-214.
Kirgöz, U.A., Odaci, D., Timur, S., Merkoçi, A., Alegret, S., Beşün,
N. & Telefoncu, A. 2006. A biosensor based on graphite epoxy composite
electrode for aspartame and ethanol detection. Analytica Chimica Acta 570(2): 165-169.
Male, K.B., Luong, J.H.T., Gibbs, B. & Konishi, Y. 1993. An improved
FIA biosensor for the determination of aspartame in dietary food products. Applied
Biochemistry and Biotechnology 38(3): 189-201.
Male, K.B., Luong, J.H.T. & Mulchandani, A. 1991. Determination of
aspartame in dietary food products by a FIA biosensor. Biosensors and
Bioelectronics 6(2): 117-123.
Nik Mansor, N.N., Leong, T.T., Safitri, E., Futra, D., Ahmad, N.S.,
Nasuruddin, D.N., Itnin, A., Zaini, I.Z., Arifin, K.T., Heng, L.Y. &
Hassan, N.I. 2018. An amperometric biosensor for the determination of bacterial
sepsis biomarker, secretory phospholipase group 2-IIA using a tri-enzyme
system. Sensors 18(3): 686.
Nikolelis, D.P. & Krull, U.J. 1990. Dynamic response characteristics
of the potentiometric carbon dioxide sensor for the determination of aspartame. Analyst 115(7): 883-888.
Nurlely, Ahmad, M., Heng, L.Y. & Tan, L.L. 2021. Potentiometric enzyme
biosensor for rapid determination of formaldehyde based on
succinimide-functionalized polyacrylate ion-selective membrane. Measurement 175: 109112.
Nurlely, Ahmad, M., Heng, L.Y. & Tan, L.L. 2022. Optical enzymatic
formaldehyde biosensor based on alcohol oxidase and pH-sensitive
methacrylic-acrylic optode membrane. Spectrochimica Acta Part A: Molecular
and Biomolecular Spectroscopy 267(Part 2): 120535.
Odaci, D., Timur, S. & Telefoncu, A. 2004. Carboxyl esterase-alcohol
oxidase based biosensor for the aspartame determination. Food Chemistry 84(3): 493-549.
Omari, A., Cao, R., Zhu, Z. & Xu, X. 2021. A comprehensive review of
recent advances on surfactant architectures and their applications for
unconventional reservoirs. Journal of Petroleum Science and Engineering 206: 109025.
Pang, M.D., Goossens, G.H. & Blaak, E.E. 2021. The impact of
artificial sweeteners on body weight control and glucose homeostasis. Frontiers
in Nutrition 7: 598340.
Patz, A. 2015. The Worst Diet Sodas
You Can Drink. https://www.prevention.com/health/a20474110/. Accessed on 30
May 2021.
Qu, F., Qi, Z.H., Liu, K.N. & Mou, S.F. 1999. Determination of
aspartame by ion chromatography with electrochemical integrated amperometric
detection. Journal of Chromatography A 850(1-2): 277-281.
Radulescu, M.C., Bucur, B., Bucur, M.P. & Radu, G.L. 2014.
Bienzymatic biosensor for rapid detection of aspartame by flow injection
analysis. Sensors 14(1): 1028-1038.
Raja Jamaludin, R.Z.A., Heng, L.Y., Tan L.L. & Chong, K.F. 2018.
Electrochemical biosensor for nitrite based on polyacrylic-graphene composite
film with covalently immobilized hemoglobin. Sensors 18(5): 1343.
Stegink, L.D. & Filer, J.L.J. 1984. Aspartame Physiology and
Biochemistry. Boca Raton: Taylor & Francis Group, LLC.
Tomić, S., Treščec, A., Tomašić, J., Petrović, B.,
Rudolf, V.S., Škrinjarić-Špoljar, M. & Reiner, E. 1995. Catalytic
properties of rabbit serum esterases hydrolyzing esterified monosaccharides. Biochimica
et Biophysica Acta - Protein Structure and Molecular Enzymology 1251(1):
11-16.
van Vliet, K., Melis, E.S., de Blaauw, P., van Dam, E., Maatman, R.G.H.J., Abeln,
D., van Spronsen, F.J. & Heiner-Fokkema, M.R. 2020. Aspartame and phe-containing
degradation products in soft drinks across Europe. Nutrients 12(6):
1887.
Xue, Y., Chen, S., Yu, J., Bunes, B.R., Xue, Z., Xu, J., Lu, B. &
Zang, L. 2020. Nanostructured conducting polymers and their composites:
Synthesis methodologies, morphologies and applications. Journal of Materials
Chemistry C 8(30): 10136-10159.
Zhou, X., Zhang, N., Li, G., Long, M., Xiao, Z., Tong, L. & Ma, Y. 2018.
Determination of eight high-intensity sweeteners in alcohol beverages by
HPLCMS/MS. In AIP Conference Proceedings. AIP Publishing LLC. 2036(1):
030011.
Zhu, Y., Guo, Y., Ye, M. & James, F.S. 2005.
Separation and simultaneous determination of four artificial sweeteners in food
and beverages by ion chromatography. Journal of Chromatography A 1085(1):
143-146.
Zuki, S.N.S.M., Tan, L.L., Azmi, N.S., Heng, L.Y.,
Chong, K.F. & Tajuddin, S.N. 2018. A whole cell bio-optode based on
immobilized nitrite-degrading microorganism on the acrylic microspheres for
visual quantitation of nitrite ion. Sensors and Actuators B: Chemical 255:
2844-2852.
*Corresponding author; email:
leeyookheng@yahoo.co.uk
|