Sains Malaysiana 51(9)(2022): 2955-2966

http://doi.org/10.17576/jsm-2022-5109-17

 

Detection Vapour of Nitrate Fertiliser Based Explosives on Transportation of Nitrates during Shipping using Diphenylamine-Calorimeter Optic Device

(Pengesanan Wap Bahan Letupan Berasaskan Baja Nitrat pada Pengangkutan Nitrat semasa Penghantaran menggunakan Peranti Optik Difenilamina-Kalorimeter)

 

NOOR HAZFALINDA HAMZAH1, MOHD FAIZAL ABDUL RAHMAN1,2, GINA FRANCESCA GABRIEL1 & KHAIRUL OSMAN1,*

 

1Forensic Science Program, Center of Diagnostic, Therapeutics & Investigation (CODTIS), Faculty of Health Sciences, Basement 1, Perpustakaan Tun Seri Lanang, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia

2Malaysian Maritime Enforcement Agency, Ministry of Home Affairs, One IOI Square, IOI Resort, 62502 Putrajaya, Federal Territory, Malaysia

 

Received: 28 December 2021/Accepted: 21 April 2022

 

Abstract

This study examines the ability of a Diphenylamine-Calorimeter Optical Device (DCOD) to detect the presence of nitrate in shipping containers. Fifteen selected inorganic fertilisers that potentially can be turned into an Improvised Explosive Device (IED) were analysed using UPLC-PDA. Results showed that only ammonium nitrate is suitable for turning into an IED and causing an explosion. A container model placed onboard a Malaysian Maritime vessel was used to determine the temperature and humidity experienced by nitrate during the voyage and at port. During the sea voyage (wet conditions), temperature and humidity were between 25-40.5 °C and 51.5-93.0%, respectively. In ports (dry conditions), the temperature ranged from 26.5-38.5 °C and 46-91% humidity. Using conventional tests in wet conditions, nitrous oxide was detectable with low reproducibility between 48-50 °C and vapour exposure duration of 850.0 to 895.0 s. While in dry conditions, nitrate oxide was detected regularly between 722.0 and 731.0 s and temperature between 44-50 °C. The sensitivity of the conventional and DCOD methods were evaluated and found to be similar. Field tests on DCOD were then conducted on nitrate stored in a container for 30 min, 1 h, 3 h and 2 days. Reading for positive results obtained were 67, 67, 11 and 0%, correspondingly. We conclude that DCOD can detect nitrate vapour in containers, but further modifications are required to increase its sensitivity.

 

Keywords: Container vessel; diphenylamine; IED; nitrate

 

Abstrak

Penyelidikan ini dijalankan untuk menguji kemampuan Alat Optik Kalorimeter Difenilamina (DCOD) bagi mengesan kehadiran nitrat dalam kontena. Lima belas baja tak organik yang berpotensi untuk dijadikan IED telah dianalisis menggunakan UPLC-PDA. Keputusan menunjukkan hanya IED berasaskan ammonium nitrat sahaja boleh menghasilkan letupan. Model kontena diletakkan di atas kapal Maritim Malaysia bagi menganalisis suhu dan kelembapan yang dialami oleh nitrat semasa pelayaran dan di pelabuhan. Semasa pelayaran (keadaan lembap), suhu dan kelembapan masing-masing adalah antara julat 25-40.5 °C dan 51.5-93.0%. Semasa di pelabuhan (keadaan kering), julat suhu dan kelembapan adalah antara 26.5-38.5 °C dan 46-91%. Ujian konvensional keadaan lembap menunjukkan gas nitros oksida dikesan pada suhu 48 °C hingga 50 °C apabila udara dialirkan pada tempoh masa 850.0 hingga 895.0 s manakala keadaan kering, nitros oksida telah dikesan secara seragam pada tempoh masa 722.0 hingga 731.0 s dan suhu antara 44-50 °C. Kesensitifan kaedah konvensional dan kaedah DCOD telah dinilai dan mempunyai persamaan. Ujian lapangan terhadap DCOD iaitu mengesan kehadiran wap nitrat dalam model kontena telah diuji pada selang masa 30 min, 1 jam, 3 jam dan 2 hari dan data bacaan keputusan positif yang diperoleh ialah 67, 67, 11 dan 0%. Kami membuat kesimpulan DCOD mempunyai potensi untuk mengesan wap nitrat dalam kontena tetapi pengubahsuaian perlu dilakukan untuk meningkatkan kesensitifan alat ini.

 

Kata kunci: Difenilamina; IED; kontena kapal; nitrat

 

References

Ahmad, F. 2001. Sustainable agriculture system in Malaysia. In Regional Workshop on Integrated Plant Nutrition System (IPNS), Development in Rural Poverty Alleviation, United Nations Conference Complex, Bangkok, Thailand. pp. 18-20.

American Water Works Association. 2002. PVC Pipe Design and Installation. Vol. 23. American Water Works Association.

Babrauskas, V. & Leggett, D. 2020. Thermal decomposition of ammonium nitrate. Fire and Materials 44(2): 250-268.

Ballard, D.G.H., Burgess, A.N., Dekoninck, J.M. & Roberts, E.A. 1987. The 'crystallinity' of PVC. Polymer 28(1): 3-9.

Burhan, A. & Vyas, B. 2016. Simultaneous determination of nitrite and nitrate by ultra-performance liquid chromatography in rat plasma. International Journal of Pharmacy and Pharmaceutical Sciences 8(6): 294-296.

Chen, M., Zhang, M., Wang, X., Yang, Q., Wang, M., Liu, G. & Yao, L. 2020. An all-solid-state nitrate ion-selective electrode with nanohybrids composite films for in-situ soil nutrient monitoring. Sensors 20(8): 2270.

Djerdjev, A.M., Priyananda, P., Gore, J., Beattie, J.K., Neto, C. & Hawkett, B.S. 2018. The mechanism of the spontaneous detonation of ammonium nitrate in reactive grounds. Journal of Environmental Chemical Engineering 6(1): 281-288.

El Sayed, M.J. 2020. Beirut ammonium nitrate explosion: A man-made disaster in times of CoViD19 pandemic. Disaster Medicine and Public Health Preparedness 18: 1-5.

Fabin, M. & Jarosz, T. 2021. Improving ANFO: Effect of additives and ammonium nitrate morphology on detonation parameters. Materials 14(19): 5745.

Fraga, C.G., Mitroshkov, A.V., Mirjankar, N.S., Dockendorff, B.P. & Melville, A.M. 2017. Elemental source attribution signatures for calcium ammonium nitrate (CAN) fertilisers used in homemade explosives. Talanta 174: 131-138.

Gezerman, A.O. 2020. A novel industrial-scale strategy to prevent degradation and caking of ammonium nitrate. Heliyon 6(3): e03628.

Gregory, O., Oxley, J., Smith, J., Platek, M., Ghonem, H., Bernier, E., Downey, M. & Cumminskey, C. 2010. Microstructural characterisation of pipe bomb fragments. Materials Characterisation 61(3): 347-354.

Hassan, M. 2001. Akta 514: Ke arah kecemerlangan keselamatan dan kesihatan pekerjaan di Malaysia. In Persidangan Kebangsaan Undang-undang Perniagaan 2001: Peranan dan Cabaran. 14 Julai 2001, Quality Hotel, City Centre, Kuala Lumpur. 

Hofer, R. & Wyss, P. 2017. The use of unburned propellant powder for shooting-distance determination. Part II: Diphenylamine reaction. Forensic Science International 278: 24-31.

Howell, J. 2017. The modern IED: Design and trends. Aviation Security International 23(4): 34-37.

Kavický, V., Figuli, L., Jangl, Š. & Zvaková, Z. 2014. Analysis of the field test results of ammonium nitrate: Fuel oil explosives as improvised explosive device charges. In Structures under Shock and Impact XIII: [13th International Conference, SUSI 2014: New Forest, United Kingdom, 3 June 2014 through 5 June 2014].- Southampton, Boston: WITpress. pp. 297-309.

Khadasevich, U. & Ladutska, N. 2018. How to ship a car easily and affordably. Working Paper. Belarusian National Technical University. pp. 87-90.

Krishnen, G., Noor, M.R.M., Jack, A. & Haron, S. 2016. Research, development and commercialisation of agriculturally important microorganisms in Malaysia. In Agriculturally Important Microorganisms, edited by Singh, H.B., Sarma, M.K. & Kewani, C. Singapore: Springer. pp. 149-166.

Lawrence, M.G. 2005. The relationship between relative humidity and the dewpoint temperature in moist air: A simple conversion and applications. Bulletin of the American Meteorological Society 86(2): 225-234.

Marshall, M. & Oxley, J.C. 2011. Aspects of Explosives Detection. Great Britain: Elsevier B.V.

Menning, D. & Östmark, H. 2008. Detection of liquid and homemade explosives: What do we need to know about their properties? In Detection of Liquid Explosives and Flammable Agents in Connection with Terrorism, edited by Schubert, H. & Kuznetsov, A. St. Petersburg, Russia: Springer Science+Business Media. pp. 55-70.

Moulton, J. 2009. Rethinking IED Strategies: From Iraq to Afghanistan-If they view IEDs as murder weapons left at the scene of a crime rather than landmines placed to inhibit maneuver, coalition forces will reap intelligence on IED networks through forensic analysis. Military Review 89(4): 26.

Nurhayati, I. 2000. A comparative study of the sale of goods in Malaysia and the Islamic law from the consumer perspective. International Islamic University Malaysia. Mstr. Thesis (Unpublished).

Ridhi, R., Chouksey, A., Gautam, S., Rawat, J. & Jha, P. 2021. Study of the effect of flow rate and decomposition temperature on sensing of ammonium nitrate by carbon nanotubes. Sensors and Actuators B: Chemical 334: 129658.

Sahrawat, K. & Burford, J. 1982. Modification of the alkaline permanganate method for assessing the availability of soil nitrogen in upland soils. Soil Science 133(1): 53-57.

Staff, D.E. 1983. The Daily Egyptian. 26 October 1983. https://opensiuc.lib.siu.edu/de_October1983?utm_source=opensiuc.lib.siu.edu%2Fde_October1983%2F4&utm_medium=PDF&utm_campaign=PDFCoverPages

Suhaila, J. & Yusop, Z. 2018. Trend analysis and change point detection of annual and seasonal temperature series in Peninsular Malaysia. Meteorology and Atmospheric Physics 130(5): 565-581.

Westrol, M.S., Donovan, C.M. & Kapitanyan, R. 2017. Blast physics and pathophysiology of explosive injuries. Annals of Emergency Medicine 69(1): S4-S9.

Wilkinson, M. 2019. IEDs and urban clearance variables in Mosul: Defining complex environments. The Journal of Conventional Weapons Destruction 23(2): 5.

Willey, R.J. 2020. The nature of ammonium nitrate decomposition and explosions. Process Safety Progress 39(4): e12214.

Yang, M., Liao, C., Tang, C., Xu, S., Li, H. & Huang, Z. 2021. The auto-ignition behaviors of HMX/NC/NG stimulated by heating in a rapid compression machine. Fuel 288: 119693.

Yang, M., Chen, X., Wang, Y., Yuan, B., Niu, Y., Zhang, Y., Liao, R. & Zhang, Z. 2017. Comparative evaluation of thermal decomposition behavior and thermal stability of powdered ammonium nitrate under different atmosphere conditions. Journal of Hazardous Materials 337: 10-19.

Zakaria, A. 2006. Soil-enhancing technologies for improving crop productivity in Malaysia and considerations for their use. In International Workshop on Sustained Management of the Soil-Rhizosphere System for Efficient Crop Production and Fertilizer Use. 16- 20 October 2006.

 

*Corresponding author; email: khairos@ukm.edu.my

 

 

 

 

previous