Sains Malaysiana 51(9)(2022):
2999-3008
http://doi.org/10.17576/jsm-2022-5109-20
Effect of Oral Environmental pH on the Dynamic Characterization of
Bioactive Restorative Materials
(Kesan pH Persekitaran Oral terhadap Pencirian Dinamik Bahan Pemulihan Bioaktif)
JOSHUA ONG EE XIN1, ADRIAN YAP U-JIN2,
AZWATEE ABDUL AZIZ3 & NOOR AZLIN YAHYA3,*
1Centre for Restorative Dentistry Studies, Faculty of
Dentistry, Universiti Teknologi MARA, 47000 Sungai Buloh, Selangor Darul Ehsan, Malaysia
2Department of Dentistry, Ng Teng Fong General
Hospital, National University Health System, Singapore
3Department of Restorative Dentistry, Faculty of
Dentistry, Universiti Malaya, 50603 Kuala Lumpur, Wilayah Persekutuan,
Malaysia
Received: 6 February
2022/Accepted: 23 April 2022
Abstract
The objective of this study was to investigate the
effects of oral environmental pH on the viscoelastic properties of bioactive
restorative materials (BRMs) by using dynamic mechanical analysis. Stainless steel molds were used to fabricate 40 beam-shaped specimens (12 × 2 ×
2 mm) for each material. The specimens were finished, measured, randomly
divided into four groups (n = 10),
and immersed in aqueous solutions of pH 3.0, 5.0, 6.8, and 10.0 at 37 °C for
seven days. The specimens were then subjected to dynamic mechanical analysis
with a 5 N load and frequency range of 0.1-10.0 Hz. Data were analyzed using
one-way ANOVA/Dunnet T3’s test (α = 0.05). Mean elastic modulus spanned from
2.68 ± 0.17 to 6.49 ± 0.71 GPa, while viscous modulus
ranged from 0.43 ± 0.03 to 0.62 ± 0.12 GPa. Loss
tangent differed from 77.30 ± 4.90 to 164.50 ± 9.12. Significant differences
among pH were discerned for (i) Elastic modulus: Cention N - pH 3.0, 5.0, 10.0 > 6.8; Activa Bioactive - pH 3.0, 6.8, 10.0 > 5.0, (ii) Viscous modulus: Cention N - pH 3.0, 5.0, 10.0 > 6.8, and (iii) Loss
tangent: Activa Bioactive - pH 5.0 > 3.0, 6.8,
10.0. Significant differences in viscoelastic properties were noted among the
BRMs with Activa Bioactive presenting the lowest
elastic modulus for all pH. Immersion of all
materials in pH 6.8 yielded the highest elastic modulus, except for Activa Bioactive. The effects of environmental pH on
viscoelastic properties of BRMs are material-dependent.
Keywords:
Bioactive; dynamic mechanical analysis; pH; viscoelastic
Abstrak
Objektif kajian ini adalah untuk mengenal pasti kesan pH persekitaran mulut pada sifat viskoelastik bahan pemulihan bioaktif (BRM) dengan menggunakan analisis mekanikal dinamik. Acuan keluli tahan karat digunakan untuk menghasilkan 40 spesimen ujian berukuran 12 × 2 × 2 mm bagi setiap bahan. Kesemua spesimen tersebut kemudiannya dirapikan, diukur dan dibahagikan secara rawak kepada empat kumpulan. Spesimen daripada setiap kumpulan (n =10) direndam di dalam larutan akueus yang mempunyai pH 3.0, 5.0, 6.8 dan 10.0 pada suhu 37 °C, selama tujuh hari. Spesimen kemudiannya tertakluk kepada analisis mekanikal dinamik dengan beban 5 N dan julat frekuensi di antara 0.1-10.0 Hz. Data dianalisis menggunakan ujian ANOVA/Dunnet T3 sehala (α = 0.05). Purata modulus elastik mempunyai julat antara (2.68 ± 0.17 GPa) dan (6.49 ± 0.71 GPa), manakala purata modulus likat adalah antara (0.43 ± 0.03 GPa) dan (0.62 ± 0.12 GPa). Purata kehilangan tangen pula adalah antara (77.30 ± 4.9) dan (164.50 ± 9.12). Keputusan analisis dari segi pH adalah seperti berikut: (i) Modulus elastik: Cention N - pH 3.0, 5.0, 10.0 > 6.8; Activa Bioactive - pH 3.0, 6.8, 10.0 > 5.0, (ii) Modulus likat: Cention N - pH 3.0, 5.0, 10.0 > 6.8 dan (iii) Kehilangan tangen: Activa Bioactive – pH 5.0 > 3.0, 6.8, 10.0. Perbezaan ketara dari segi sifat viskoelastik antara pelbagai bahan telah dapat dikesan dan modulus elastik bagi bahan Activa Bioactive didapati paling rendah dalam semua pH rendaman. Semua bahan yang direndam di dalam pH 6.8 menghasilkan modulus elastik tertinggi, kecuali Activa Bioactive. Kesimpulannya, kesan pH persekitaran ke atas sifat viskoelastik BRM adalah bergantung kepada bahan-bahan ujian.
Kata kunci: Analisis mekanikal dinamik; bioaktif; pH; sifat viskoelastik
References
Aframian, D.J., Ofir, M. & Benoliel, R. 2010.
Comparison of oral mucosal pH values in bulimia nervosa, GERD, BMS patients and
healthy population. Oral Diseases 16(8): 807-811.
Alrahlah, A. 2018. Diametral
tensile strength, flexural strength, and surface microhardness of bioactive
bulk fill restorative. Journal of
Contemporary Dental Practice 19(1): 13-19.
Attin, T., Becker, K.,
Wiegand, A., Tauböck, A.T.T. & Wegehaupt, F.J. 2012. Impact of laminar flow velocity of
different acids on enamel calcium loss. Clinical
Oral Investigations 17(2): 595-600.
Attin, T., Florian, J.
& Wegehaupt, F.J. 2014. Impact of erosive
conditions on tooth-colored restorative materials. Dental Materials 30(1): 43-49.
Bagheri,
R., Tyas, M.J. & Burrow, M.F. 2007. Subsurface
degradation of resin-based composites. Dental
Materials 23(8): 944-951.
Boparai,
K.S. & Singh, R. 2018. Thermoplastic composites for fused deposition
modeling filament: Challenges and applications. Encyclopedia of Materials: Composites 1: 774-784.
Chan,
D.C., Chung, A.K. & Paranjpe, A. 2018.
Antibacterial and bioactive dental restorative materials: Do they really work? American Journal of Dentistry 31(Sp Is B): 3B-5B.
Chenicheri, S.R.U.,
Ramachandran, R., Thomas, V. & Wood, A. 2017. Insight into oral biofilm:
Primary, secondary and residual caries and phyto-challenged
solutions. The Open Dentistry Journal 11:
312-333.
Cilli, R., Pereira,
J.C. & Prakki, A. 2012. Properties of dental
resins submitted to pH catalysed hydrolysis. Journal of Dentistry 40(12): 1144-1150.
Demarco,
F.F., Correa, M.B., Cenci, M.S., Moraes, R.R. & Opdam, N.J. 2012. Longevity of posterior composite
restorations: not only a matter of materials. Dental Materials 28(1): 87-101.
Ferracane,
J.L. 2005. Developing a more complete understanding of stresses produced in
dental composites during polymerization. Dental
Materials 21(1): 36-42.
François,
P., Remadi, A., Goff, S.L., Abdel-Gawad, S., Attal,
J. & Dursun, E. 2021. Flexural properties and
dentin adhesion in recently developed self-adhesive bulk-fill materials. Journal of Oral Science 63(2): 139-144.
Friedrich,
J.E. 2001. Titratable activity of acid tastants. In Current Protocol in Food Analytical
Chemistry, edited by Wrolstad, R.E. New York:
John Wiley and Sons Inc. doi/10.1002/0471142913.fag0201s00
Fuss,
M., Wicht, M.J., Attin, T., Derman, S.H.M. & Noack, M.J. 2017. Protective
buffering capacity of restorative dental materials in vitro. Journal of Adhesive Dentistry 19(2):
177-183.
Gal,
J.Y., Fovet, Y. & Adib-Yadzi,
M. 2001. About a synthetic saliva for in
vitro studies. Talanta 53(6): 1103-1111.
Jokstad, A., Bayne, S., Blunck, U., Tyas, M. &
Wilson, N. 2001. Quality of dental restorations. FDI Commission Project 2-95. International Dental Journal 51(3):
117-158.
Marghalani, H.Y. 2010.
Post-irradiation vickers microhardness development of
novel resin composites. Materials
Research 13(1): 81-87.
Mayanagi, G., Igarashi,
K., Washio, J., Nakajo, K., Domon-Tawaraya, H. & Takahashi, N. 2011. Evaluation
of pH at the bacteria-dental cement interface. Journal of Dental Research 90(12): 1446-1450.
Mesquita,
R.V., Axmann, D. & Geis-Gerstorfer,
J. 2006. Dynamic visco-elastic properties of dental
composite resins. Dental Materials 22(3): 258-267.
Mjör, I.A., Jokstad, A. & Qvist, V. 1990.
Longevity of posterior restorations. International
Dental Journal 40(1): 11-17.
Moon,
J.D., Seon, E.M., Son, S.A., Jung, K.H., Kwon, Y.H.
& Park, J.K. 2015. Effect of immersion into solutions at various pH on the
color stability of composite resins with different shades. Restorative Dentistry & Endodontics 40(4): 270-276.
Nedeljkovic, I., Munck, J.D., Vanloy, A., Declerck, D., Lambrechts, P., Peumans, M., Teughels, W., Van Meerbeek, B. & Landuyt, K.L.V. 2020. Secondary caries:
Prevalence, characteristics and approach. Clinical
Oral Investigations 24(2): 683-691.
Ong,
J.E.X., Yap, A.U., Hong, J.Y., Eweis, A.H. &
Yahya, N.A. 2018. Viscoelastic properties of contemporary bulk-fill
restoratives: A dynamic-mechanical analysis. Operative Dentistry 43(3): 307-314.
Po,
J.M., Kieser, J.A., Gallo, L.M., T´esenyi,
A.J., Herbison, P. & Farella,
M. 2011. Time-frequency analysis of chewing activity in the natural
environment. Journal of Dental Research 90(10): 1206-1210.
Prakki, A., Cilli, R., Mondelli, R., Kalachandra, S. & Pereira, J.C. 2004. Influence of pH
environment on polymer based dental material properties. Journal of Dentistry 33(2): 91-98.
Sideridou, I.D. & Karabela, M.M. 2011. Sorption of water, ethanol or
ethanol/water solutions by light-cured dental dimethacrylate resins. Dental Materials 27(10):
1003-1010.
Sujith,
R., Yadav, T.G., Pitalia, D., Babaji,
P., Apoorva, K. & Sharma, A. 2020. Comparative evaluation of mechanical and
microleakage properties of cention-n, composite, and
glass ionomer cement restorative materials. Journal
of Contemporary Dental Practice 21(6): 691-695.
Syed,
J. & Chadwick, R. 2009. A laboratory investigation of consumer addition of
UHT milk to lessen the erosive potential of fizzy drinks. British Dental Journal 206(3): E6.
Valinoti, A.C., Neves,
B.G., da Silva, E.M. & Maia, L.C. 2008. Surface degradation of composite
resins by acidic medicines and pH-cycling. Journal
of Applied Oral Science 16(4): 257-265.
Vouvoudi, E.C. & Sideridou, I.D. 2012. Dynamic mechanical properties of
dental nanofilled light-cured resin composites:
Effect of food-simulating liquids. Journal
of Mechanical Behaviour Biomedical Materials 10(1): 87-96.
Wang,
L., D'Alpino, P.H., Lopes, L.G. & Pereira, J.C.
2003. Mechanical properties of dental restorative materials: Relative
contribution of laboratory tests. Journal
of Applied Oral Science 11(3): 162-167.
Wang,
X.Y. & Yap, A.U. 2009. Effects of environmental calcium and phosphate on
wear and strength of glass ionomers exposed to acidic conditions. Journal of Biomedical Material Research Part
B: Applied Biomaterials 88(2): 458-464.
Yap,
A.U., Choo, H.S., Choo, H.Y. & Yahya, N.A. 2021a. Flexural properties of
bioactive restoratives in cariogenic environment. Operative Dentistry 46(4): 448-456.
Yap,
A.U., Ong, J.E. & Yahya, N.A. 2021b. Effect of resin coating on highly
viscous glass ionomer cements: A dynamic analysis. Journal of Mechanical Behaviour of Biomedical
Materials 113: 104120.
Yap,
A.U., Eweis, A.H. & Yahya, N.A. 2020. Dynamic and
static flexural appraisal of resin-based composites: Comparison of the ISO and
mini-flexural tests. Operative Dentistry 43(5): E223-E231.
Yap,
A.U., Lim, L.Y., Yang, T.Y., Ali, A. & Chung, S.M. 2005. Influence of
dietary solvents on strength of nanofill and ormocer composites. Operative
Dentistry 30(1): 129-133.
Yilmaz,
E.Ç. & Sadeler, R. 2018. Effect of artificial
aging environment and time on mechanical properties of composite materials. Journal of Dental Research and Review 5(4): 111-115.
*Corresponding author; email: nazlin@um.edu.my
|