Sains Malaysiana 51(9)(2022):
3027-3041
http://doi.org/10.17576/jsm-2022-5109-23
Investigation of Effect of Various Hot Gas Atomisation and
Melting Pot Temperatures on Tin Alloy Powder Product
(Kajian Kesan Pelbagai Pengatoman Gas Panas dan Suhu Periuk Lebur pada Produk Serbuk Aloi Timah)
ABDUL BASYIR1,*,
ROBBY KURNIA1, CHERLY FIRDHARINI1,2, DIDIK ARYANTO1, WAHYU BAMBANG WIDAYATNO1,3 &
AGUS SUKARTO WISMOGROHO1,3
1Research
Center for Physics, National Research and Innovation Agency, Indonesia
2Chemistry Department, Indonesia University, Indonesia
3Pusat Kolaborasi Riset Logam Timah, Indonesia
Received: 5 January
2022/Accepted: 23 April 2022
Abstract
This
research investigates the effect of different types of hot gas atomisation (argon, nitrogen and oxygen) and melting pot temperatures
on the particle size distribution, microstructure, density and phase of tin
alloy (Sn-Cu-Ni-Ge) powder products. The tin alloy powder produced by hot argon
gas atomisation had the greatest density (7.84 g/cm3)
and the most spherical shape. While the tin alloy powder generated by hot
oxygen gas atomisation had the lowest density (6.83
g/cm3), the highest endothermic area (60.41695 area unit) and the
most elongated, irregular shape. Hot argon and nitrogen gas atomisation at a melting pot temperature of 800 °C produced a higher yield of 0-25 µm
powder than at 700 °C. By contrast, hot oxygen atomisation produced the opposite result. However, all the powder products prepared at 800 °C
had a higher spherical shape ratio in the range of 0-25 µm. Tin alloy powder
produced by hot oxygen gas atomisation comprised only
the elements of Sn and Cu, while the powder generated by hot argon and nitrogen
gas atomisation consisted of elements such as the
ingot of this powder.
Keywords: Density; hot gas atomization; microstructure;
particle size; tin alloy powder
Abstrak
Penyelidikan ini mengkaji kesan pelbagai jenis pengatoman gas panas (argon, nitrogen dan oksigen)
dan suhu periuk lebur pada taburan saiz zarah, struktur mikro, ketumpatan dan fasa produk serbuk aloi timah (Sn-Cu-Ni-Ge). Serbuk aloi timah yang dihasilkan oleh pengabusan gas argon panas mempunyai ketumpatan terbesar (7.84 g/cm3)
dan bentuk paling sfera. Manakala serbuk aloi timah yang dijana melalui pengabusan gas oksigen panas mempunyai ketumpatan terendah (6.83 g/cm3), kawasan endoterma tertinggi (60.41695 unit kawasan) dan bentuk paling memanjang dan tidak sekata. Pengatoman argon panas dan gas nitrogen pada suhu periuk lebur 800 °C menghasilkan hasil serbuk 0-25 µm yang lebih tinggi daripada pada 700 °C. Sebaliknya, pengatoman oksigen panas menghasilkan keputusan yang bertentangan. Walau bagaimanapun, semua produk serbuk yang disediakan pada 800 °C mempunyai nisbah bentuk sfera yang lebih tinggi dalam julat 0-25 µm. Serbuk aloi timah yang dihasilkan melalui pengatoman gas oksigen panas hanya terdiri daripada unsur Sn dan Cu, manakala serbuk yang dihasilkan oleh pengatoman argon panas dan gas
nitrogen terdiri daripada unsur seperti jongkong serbuk ini.
Kata kunci: Keamatan;
mikrostruktur; pengatoman gas panas; serbuk timah paduan; ukuran zarah
REFERENCES
AkkaAkkas, M. & Boz, M. 2019.
Investigation of the compressibility and sinterabilty of AZ91 powder production and particle production by gas atomisation method. Journal of Magnesium and Alloys 7(3): 400-413. https://doi.org/10.1016/j.jma.2019.05.007
Aksoy, A. & Ünal, R. 2006.
Effects of gas pressure and protrusion length of melt delivery tube on powder
size and powder morphology of nitrogen gas atomised tin powders. Powder Metallurgy 49(4): 349-354. https://doi.org/10.1179/174329006X89425
Anderson, I.E. & Terpstra, R.L. 2002. Progress toward gas
atomization processing with increased uniformity and control. Materials
Science and Engineering A 326(1): 101-109. https://doi.org/10.1016/S0921-5093(01)01427-7
Basyir, A., Aryanto,
D., Wismogroho, A.S. & Widayatno,
W.B. 2020. Effect of hot isostatic pressing method to enhance quality of tin
powder. In AIP Conference Proceedings. AIP Publishing LLC. 2256(030021):
1-9. https://doi.org/10.1063/5.0014653
Chen, G., Zhao, S.Y., Tan, P., Wang, J., Xiang, C.S. & Tang,
H.P. 2018. A comparative study of Ti-6Al-4V powders for additive manufacturing
by gas atomization, plasma rotating electrode process and plasma atomization. Powder
Technology 333: 38-46. https://doi.org/10.1016/j.powtec.2018.04.013
Chhabra, R.P. & Sheth, D.K.
1990. Viscosity of molten metals and its temperature dependence. International
Journal of Material Research 81(4): 264-271.
https://doi.org/10.1515/ijmr-1990-810408
Drellishak, K.S., Aeschliman, D.P. & Cambel, A.B. 1964. Tables of Thermodynamic Properties of
Argon, Nitrogen, and Oxygen Plasmas. Illinois: Arnold Engineering
Development Center.
Feng, G., Jiao, K., Zhang, J. & Gao, S. 2021. High-temperature
viscosity of iron‑carbon melts based on liquid structure: The effect of
carbon content and temperature. Journal of Molecular Liquids 330: 115603.
https://doi.org/10.1016/j.molliq.2021.115603.
Gao, C.F., Xiao, Z.Y., Zou, H.P., Liu, Z.Q., Chen, J., Li, S.K.
& Zhang, D.T. 2019. Characterization of spherical AlSi10Mg powder
produced by double-nozzle gas atomization using different parameters. Transactions
of Nonferrous Metals Society of China 29(2): 374-384. https://doi.org/10.1016/S1003-6326(19)64947-2
Gao, M.Z., Ludwig, B. & Palmer, T.A. 2021. Impact of atomization
gas on characteristics of austenitic stainless steel powder feedstocks for additive manufacturing. Powder Technology 383: 30-42.
https://doi.org/10.1016/j.powtec.2020.12.005
Huang, Z., Czisch, C., Schreckenberg, P., Büllesfeld, F.
& Fritsching, U. 2006. Technical note: Powder
production by gas atomization of bioglass melt. Particle
and Particle Systems Characterization 22(5): 345-351. https://doi.org/10.1002/ppsc.200500966
Kaysser, W.A. & Weise, W. 2000. Powder metallurgy and sintered materials. Ullmann’s Encyclopedia of Industrial Chemistry. https://doi.org/10.1002/14356007.a22_105
Kong, C.J., Brown, P.D., Harris, S.J. & McCartney, D.G.
2007. Analysis of microstructure formation in gas-atomised Al-12 Wt.% Sn-1 Wt.% Cu alloy powder. Materials Science and Engineering A 454-455: 252-259. https://doi.org/10.1016/j.msea.2006.11.050
Metz, R., Machado, C., Houabes,
M., Pansiot, J., Elkhatib,
M., Puyanē, R. & Hassanzadeh,
M. 2008. Nitrogen spray atomization of molten tin metal: powder morphology
characteristics. Journal of Materials Processing Technology 189(1-3): 132-137.
https://doi.org/10.1016/j.jmatprotec.2007.01.014
Minagawa, K., Kakisawa, H., Osawa, Y., Takamori, S. & Halada, K. 2005. Production of fine spherical lead-free
solder powders by hybrid atomization. Science and Technology of Advanced
Materials 6(3-4): 325-329. https://doi.org/10.1016/j.stam.2005.03.010
Neikov,
O.D., Naboychenko, S.S. & Yefimov, N.A. 2009. Handbook of
Non-Ferrous Metal Powders: Technologies and
Applications, edited by Neikov,
O.D., Naboychenko, S.S. & Dowson, G. Amsterdam: Elsevier Ltd.
Nishimura, S., Matsumoto, S. & Terashima,
K. 2002. Variation of silicon melt viscosity with boron addition. Journal of
Crystal Growth 237-239: 1667-1670. https://doi.org/10.1016/S0022-0248(01)02317-X
Özbilen, S., Ünal, A. & Sheppard, T.
1996. Influence of liquid metal properties on particle size of inert gas atomised powders. Powder Metallurgy 39(1): 44-52.
https://doi.org/10.1179/pom.1996.39.1.44
Özbilen, S., Ünal,
A. & Sheppard, T. 1989. Influence of oxygen on morphology and oxide content
of gas atomized aluminium powders. In Physical
Chemistry of Powder Metals: Production and Processing. pp. 489-505.
Pan, H., Ji, H., Liang, M., Zhou, J. & Li, M. 2019.
Size-dependent phase transformation during gas atomization process of Cu-Sn alloy
powders. Materials 12(2): 245-257. https://doi.org/10.3390/ma12020245
Plookphol, T., Wisutmethangoon,
S. & Gonsrang, S. 2011. Influence of process
parameters on SAC305 lead-free solder powder produced by centrifugal
atomization. Powder Technology 214(3): 506-512. https://doi.org/10.1016/j.powtec.2011.09.015
Tanaka, T. & Hara, S. 1997. Surface tension and viscosity
of liquid iron alloys. Materia Japan 36(1): 47-54. https://doi.org/10.2320/materia.36.47
Ünal, A. 1992. Rapid solidification of
magnesium by gas atomization. Materials and Manufacturing Processes 7(3):
441-461. https://doi.org/10.1080/10426919208947431
Ünal, A. 2018. Production of rapidly
solidified aluminium alloy powders by gas atomisation and their applications. Powder Metallurgy 33(1): 53-64. https://doi.org/10.1179/pom.1990.33.1.53
Urionabarrenetxea, E., Avello,
A., Rivas, A. & Martín, J.M. 2021. Experimental study of the influence of
operational and geometric variables on the powders produced by close-coupled
gas atomisation. Materials & Design 199:
109941. https://doi.org/10.1016/j.matdes.2020.109441
Vandel, E., Vaasma,
T. & Sugita, S. 2020. Application of image analysis technique for
measurement of sand grains in sediments. MethodsX 7: 100981. https://doi.org/10.1016/j.mex.2020.100981
Vippola, M., Valkonen,
M., Sarlin, E., Honkanen, M.
& Huttunen, H. 2016. Insight to nanoparticle size
analysis - novel and convenient image analysis method versus conventional
techniques. Nanoscale Research Letters 11: 1-9. https://doi.org/10.1186/s11671-016-1391-z
Wisutmethangoon, S., Plookphol,
T. & Sungkhaphaitoon, P. 2011. Production of
SAC305 powder by ultrasonic atomization. Powder Technology 209(1-3): 105-111.
https://doi.org/10.1016/j.powtec.2011.02.016
Xie, J.W., Zhao, Y.Y. & Dunkley,
J.J. 2004. Effects of processing conditions on powder particle size and
morphology in centrifugal atomisation of tin. Powder
Metallurgy 47(2): 168-172. https://doi.org/10.1179/003258904225015482
Younglove, B.A. & Olien,
N.A. 1985. Tables of Industrial Gas Container Contents and Density for
Oxygen, Argon, Nitrogen, Helium, and Hydrogen. Washington DC: United
States Government Printing Office.
Zhang, L., Chen, X., Li, D., Chen, C., Qu, X., He, X. &
Li, Z. 2015. A comparative investigation on MIM418 superalloy fabricated using
gas- and water-atomized powders. Powder Technology 286: 798-806. https://doi.org/10.1016/j.powtec.2015.09.023
Zhang, L.P. & Zhao, Y.Y. 2017. Particle size
distribution of tin powder produced by centrifugal atomisation using rotating cups. Powder Technology 318: 62-67. https://doi.org/10.1016/j.powtec.2017.05.038
Zhao, X., Xu, J., Zhu, X. & Zhang, S. 2008. Effect of
closed-couple gas atomization pressure on the performances of Al-20Sn-1Cu powders. Rare Metals 27(4): 439-443. https://doi.org/10.1016/S1001-0521(08)60159-X
*Corresponding author; email: abdulbasyir037@gmail.com
|