Sains Malaysiana 51(9)(2022):
3043-3057
http://doi.org/10.17576/jsm-2022-5109-24
Potensi Sungkup Plastik daripada Filem Selulosa Terjana
Semula: Suatu Ulasan
(Potential of Plastic Mulch From Regenerated Cellulose Film: A Review)
Nursyamimi Ahmad Ghazali1, Kushairi Mohd
Salleh2,3,*, Nur Fathihah Jafri1 & Sarani Zakaria1
1Jabatan Fizik Gunaan, Fakulti Sains dan Teknologi, Universiti Kebangsaan Malaysia, 43600 UKM Bangi,
Selangor Darul Ehsan, Malaysia
2Bioresource Technology Division, School of Industrial Technology, Universiti Sains Malaysia, Penang 11800,
Malaysia
3Renewable Biomass Transformation Cluster, School of Industrial Technology, Universiti Sains Malaysia, Penang
11800, Malaysia
Received: 9 July 2021/Accepted: 31
March 2022
Abstrak
Sungkup ialah bahan yang dihamparkan pada
permukaan tanah, digunakan secara khusus untuk pertanian. Penggunaan sungkup
plastik (SP) dalam bidang pertanian masih berterusan di seluruh dunia sejak
berpuluh tahun yang lalu. Ia merupakan teknologi penting dalam pertanian yang
meningkatkan hasil dan kualiti tanaman dengan penggunaan input air yang rendah.
Bahan SP telah dikelaskan kepada dua kumpulan iaitu sungkup berasaskan
petroleum dan sungkup berasaskan bahan semula jadi daripada sisa pertanian.
Tanah tanpa sungkup mendorong kepada beberapa masalah seperti tanggalan zarah,
adangan permukaan, kerakan dan padatan. Namun, penggunaan SP yang berlebihan
dalam pertanian moden telah mengancam kelestarian keseluruhan ekosistem yang
disebabkan oleh pengekalan sisa plastik pada persekitaran daratan dan akuatik.
Oleh yang demikian, rantaian tanaman termasuklah tumbuhan, tanah dan air
serta manusia juga terdedah kepada ancaman ini. Permasalahan ini telah
mendorong kepada penghasilan sungkup plastik terbiodegradasi (SPB) seperti filem
selulosa terjana semula (FSTS). Maka, ulasan kajian terhadap potensi SPB
khususnya FSTS yang merangkumi fizikal, mekanikal, kimia dan sifat biodegradasi
menjadi fokus utama dalam penulisan makalah ini.
Kata kunci: Penghasilan; produk berasaskan biosumber; produk hijau; sifat fizikal; sifat kimia; sifat mekanikal
Abstract
Mulch is a material spread on the soil surface, explicitly used for
agriculture. The use of plastic mulch (PM) in agriculture has continued worldwide
for the past decades. It is an important technology in agriculture that
improves crop yields and quality with low water input consumption. PM materials
have been classified into two groups, petroleum-based mulches and mulches based
on natural materials or agricultural waste. Soil without mulch leads to several
problems such as particle detachment, surface sealing, crusting, and soil compaction.
However, the excessive use of PM in modern agriculture has threatened the
sustainability of the entire ecosystem due to the retention of plastic waste in
terrestrial and aquatic environments. Therefore, crop chains including plants,
soil, and water and humans are also vulnerable to this threat. This problem
has led to biodegradable plastic mulch (BPM) production, such as regenerated
cellulose film (RCF). Therefore, a review on BPM, specifically RCF based on
their physical, mechanical, chemical and biodegradable properties, is the main
focus in writing this paper.
Keywords: Bioresource based products; chemical properties;
mechanical properties; green products; mechanical properties; physical
properties; production
REFERENCES
Adhikari, R., Bristow, K.L., Casey, P.S., Freischmidt, G.,
Hornbuckle, J.W. & Adhikari, B. 2016. Preformed and sprayable polymeric
mulch film to improve agricultural water use efficiency. Agricultural Water
Management 169: 1-13.
Ai, B., Zheng, L., Li, W., Zheng, X.,
Yang, Y., Xiao, D., Shi, J. & Sheng, Z. 2021. Biodegradable cellulose film
prepared from banana pseudo-stem using an ionic liquid for mango preservation. Frontiers
in Plant Science 12: 1-10.
Akhtar, K., Wang, W., Ren, G., Khan,
A., Feng, Y. & Yang, G. 2018. Changes in soil enzymes, soil properties, and
maize crop productivity under wheat straw mulching in Guanzhong, China. Soil
and Tillage Research 182(95): 94-102.
Amalini, A.N., Haida, M.K.N., Imran,
K. & Haafiz, M.K.M. 2019. Relationship between dissolution temperature and
properties of oil palm biomass based-regenerated cellulose films prepared via
ionic liquid. Materials Chemistry and Physics 221: 382-389.
Amran, U.A., Zakaria, S., Chia, C.H.,
Fang, Z. & Masli, M.Z. 2017. Production of liquefied oil palm empty fruit
bunch based polyols via microwave heating. Energy and Fuels 31(10):
10975-10982.
Andrady, A.L. & Neal, M.A. 2009.
Applications and societal benefits of plastics. Philosophical Transactions
of the Royal Society B: Biological Sciences 364(1526): 1977-1984.
Ardisson, G.B., Tosin, M., Barbale,
M. & Degli-Innocenti, F. 2014. Biodegradation of plastics in soil and
effects on nitrification activity. A laboratory approach. Frontiers in Microbiology 5(475): 710.
Armir, N.A.Z., Zulkifli, A.,
Gunaseelan, S., Palanivelu, S.D., Salleh, K.M., Othman, M.H.C. & Zakaria,
S. 2021. Regenerated cellulose products for agricultural and their potential: A
review. Polymers 13(20): 1-29.
Azahari, N.A., Zakaria, S., Kaco, H.,
Yee, G.S., Chia, C.H., Jaafar, S.N.S. & Sajab, M.S. 2017. Membran selulosa
kenaf terjana semula daripada larutan akues NaOH/Urea yang digumpal menggunakan
asid sulfurik. Sains Malaysiana 46(5): 795-801.
Bandopadhyay, S., Martin-Closas, L.,
Pelacho, A.M. & DeBruyn, J.M. 2018. Biodegradable plastic mulch films:
Impacts on soil microbial communities and ecosystem functions. Frontiers in
Microbiology 9: 1-7.
Bilck, A.P., Grossmann, M.V.E. &
Yamashita, F. 2010. Biodegradable mulch films for strawberry production. Polymer
Testing 29(4): 471-476.
Briassoulis, D. & Giannoulis, A.
2018. Evaluation of the functionality of bio-based plastic mulching films. Polymer
Testing 67: 99-109.
Brodhagen, M., Peyron, M., Miles, C.
& Inglis, D.A. 2015. Biodegradable plastic agricultural mulches and key
features of microbial degradation. Applied Microbiology and Biotechnology 99(3): 1039-1056.
Chae, Y. & An, Y. 2018. Current
research trends on plastic pollution and ecological impacts on the soil
ecosystem: A review. Environmental Pollution 240: 387-395.
Chandra, R. & Rustgi, R. 1997.
Biodegradation of maleated linear low-density polyethylene and starch blends. Polymer
Degradation and Stability 56(2): 185-202.
Claro, P.I.C., Neto, A.R.S., Bibbo,
A.C.C., Mattoso, L.H.C., Bastos, M.S.R. & Marconcini, J.M. 2016.
Biodegradable blends with potential use in packaging: A comparison of
PLA/chitosan and PLA/cellulose acetate films. Journal of Polymers and the
Environment 24(4): 363-371.
Corbin, A., Cowan, J., Miles, C.,
Dorgan, J.R. & Inglis, D. 2013. Using biodegradable plastics as
agricultural mulches. Washington State University Extension. pp. 1-6.
Deng, L., Yu, Y., Zhang, H., Wang, Q.
& Yu, R. 2019. The effects of biodegradable mulch film on the growth,
yield, and water use efficiency of cotton and maize in an arid region. Sustainability
(Switzerland) 11(24): 1-15.
Doran, J.W. 1980. Microbial changes
associated with residue management with reduced tillage. Soil Science
Society of America Journal 44(5): 518-523.
Elias, S.A., Alderton, D., Cochran,
J.K., Dellasala, D.A., Faccenna, C., Goldstein, M.I., Lajtha, K., Marshall, S.,
Mather, T.A., Nehrenheim, E., Schoof, J., Sinclair, H.D. & Smith, P.N.
2018. Reference Module in Earth Systems and Environmental Sciences.
United States: Elsevier Inc.
Gan, S., Zakaria, S., Chia, C.H.,
Chen, R.S., Ellis, A.V. & Kaco, H. 2017. Highly porous regenerated
cellulose hydrogel and aerogel prepared from hydrothermal synthesized cellulose
carbamate. PLoS ONE 12(3): 1-13.
Gewert, B., Plassmann, M.M. &
Macleod, M. 2015. Pathways for degradation of plastic polymers floating in the
marine environment. Environmental Sciences: Processes and Impacts 17(9):
1513-1521.
Ghaderi, M., Mousavi, M., Yousefi, H.
& Labbafi, M. 2014. All-cellulose nanocomposite film made from bagasse
cellulose nanofibers for food packaging application. Carbohydrate Polymers 104: 59-65.
Grewal, R., Sweesy, W., Jur, J.S.
& Willoughby, J. 2012. Moisture vapor barrier properties of biopolymers for
packaging materials. In Functional Materials from Renewable Sources, disunting
oleh Liebner, F. & Rosenau, T. Oxford: American Chemical Society. hlm.
271-296.
Haque, M.A., Jahiruddin, M. &
Clarke, D. 2018. Effect of plastic mulch on crop yield and land degradation in
south coastal saline soils of Bangladesh. International Soil and Water
Conservation Research 6(4): 317-324.
Huang, W., Wang, Y., Zhang, L. &
Chen, L. 2016. Rapid dissolution of spruce cellulose in H2SO4 aqueous solution
at low temperature. Cellulose 23(6): 3463-3473.
Jiménez, A., Fabra, M.J., Talens, P.
& Chiralt, A. 2012. Effect of re-crystallization on tensile, optical and
water vapour barrier properties of corn starch films containing fatty acids. Food
Hydrocolloids 26(1): 302-310.
Kasirajan, S. & Ngouajio, M.
2012. Polyethylene and biodegradable mulches for agricultural applications: A
review. Agronomy for Sustainable Development 32(2): 501-529.
Klemm, D., Heublein, B., Fink, H.P.
& Bohn, A. 2005. Cellulose: Fascinating biopolymer and sustainable raw
material. Angewandte Chemie - International Edition 44(22): 3358-3393.
Lal, R. 1974. Soil temperature, soil
moisture and maize yield from mulched and unmulched tropical soils. Plant
and Soil 40(1): 129-143.
Lamont, W.J. 2005. Plastics:
Modifying the microclimate for the production of vegetable crops. HortTechnology 15(3): 477-481.
Leppänen, I., Vikman, M., Harlin, A.
& Orelma, H. 2020. Enzymatic degradation and pilot-scale composting of
cellulose-based films with different chemical structures. Journal of
Polymers and the Environment 28(2): 458-470.
Liang, W., Zhao, Y., Xiao, D., Cheng,
J. & Zhao, J. 2020. A biodegradable water-triggered chitosan/hydroxypropyl
methylcellulose pesticide mulch film for sustained control of Phytophthora
sojae in soybean (Glycine max L. Merr.). Journal of Cleaner
Production 245: 118943.
Liu, E., Zhang, L., Dong, W. &
Yan, C. 2021. Biodegradable plastic mulch films in agriculture: Feasibility and
challenges. Environmental Research Letters 16(1): 011004.
Liu, J., Zhu, L., Luo, S., Bu, L.,
Chen, X., Yue, S. & Li, S. 2014. Response of nitrous oxide emission to soil
mulching and nitrogen fertilization in semi-arid farmland. Agriculture,
Ecosystems and Environment 188: 20-28.
Luo, J., Chen, Z. & Zhang, K.Y.
2013. Preparation and characterization of biodegradable cotton mulching film. Applied
Mechanics and Materials 368-370: 791-794.
Marichal-Gallardo, P., Pieler, M.M.,
Wolff, M.W. & Reichl, U. 2017. Steric exclusion chromatography for
purification of cell culture-derived influenza A virus using regenerated
cellulose membranes and polyethylene glycol. Journal of Chromatography A 1483: 110-119.
Moebius-Clune, B.N., Moebius-Clune,
D.J., Gugino, B.K., Idowu, O.J., Schindelbeck, R.R., Ristow, A.J., van Es,
H.M., Thies, J.E., Shayler, H.A., McBride, M.B., Wolfe, D.W. & Abawi, G.S.
2016. Comprehensive Assessment of Soil Health - The Cornell Framework. Ithaca,
New York. Cornell University.
Mohan, S.K. & Srivastava, T.
2010. Microbial deterioration and degradation of polymeric materials. Journal
of Biochemical Technology 2(4): 210-215.
Mutetwa, M. & Mtaita, T. 2014.
Effects of mulching and fertilizer sources on growth and yield of onion. Journal
of Global Innovations in Agricultural and Social Sciences 2(3): 102-106.
Ning, R., Liang, J., Sun, Z., Liu, X.
& Sun, W. 2021. Preparation and characterization of black biodegradable
mulch films from multiple biomass materials. Polymer Degradation and
Stability 183: 109411.
Nur Aimi, M.N., Anura, H., Maizirwan,
M., Sapuan, S.M., Wahit, M.U. & Zakaria, S. 2015. Preparation of durian
skin nanofibre (DSNF) and its effect on the properties of polylactic acid (PLA)
biocomposites. Sains Malaysiana 44(11): 1551-1559.
Pang, J., Liu, X., Zhang, X., Wu, Y.
& Sun, R. 2013. Fabrication of cellulose film with enhanced mechanical
properties in ionic liquid 1-allyl-3-methylimidaxolium chloride (AmimCl). Materials 6(4): 1270-1284.
Pang, J., Wu, M., Zhang, Q., Tan, X.,
Xu, F., Zhang, X. & Sun, R. 2015. Comparison of physical properties of
regenerated cellulose films fabricated with different cellulose feedstocks in
ionic liquid. Carbohydrate Polymers 121: 71-78.
Perotto, G., Ceseracciu, L.,
Simonutti, R., Paul, U.C., Guzman-Puyol, S., Tran, T.N., Bayer, I.S. &
Athanassiou, A. 2018. Bioplastics from vegetable waste: Via an eco-friendly
water-based process. Green Chemistry 20(4): 894-902.
Qi, H., Chang, C. & Zhang, L.
2009. Properties and applications of biodegradable transparent and
photoluminescent cellulose films prepared via a green process. Green
Chemistry 11(2): 177-184.
Ramakrishna, A., Tam, H.M., Wani,
S.P. & Long, T.D. 2006. Effect of mulch on soil temperature, moisture, weed
infestation and yield of groundnut in northern Vietnam. Field Crops Research 95(2-3): 115-125.
Ramos, L., Berenstein, G., Hughes,
E.A., Zalts, A. & Montserrat, J.M. 2015. Polyethylene film incorporation
into the horticultural soil of small periurban production units in Argentina. Science
of the Total Environment 523: 74-81.
Ranjan, P., Patle, G.T., Prem, M.
& Solanke, K.R. 2017. Organic mulching- a water saving technique to
increase the production of fruits and vegetables. Current Agriculture
Research Journal 5(3): 371-380.
Saidi, A.S.M., Zakaria, S., Chia,
C.H., Jaafar, S.N.S. & Padzil, F.N.M. 2016. Physico-mechanical properties
of kenaf pulp cellulose membrane cross-linked with glyoxal. Sains Malaysiana 45(2): 263-270.
Salleh, K.M., Zakaria, S., Sajab,
M.S., Gan, S., Chia, C.H., Jaafar, S.N.S. & Amran, U.A. 2018. Chemically
crosslinked hydrogel and its driving force towards superabsorbent behaviour. International
Journal of Biological Macromolecules 118: 1422-1430.
Sayyed, A.J., Deshmukh, N.A. &
Pinjari, D.V. 2019. A critical review of manufacturing processes used in
regenerated cellulosic fibres: Viscose, cellulose acetate, cuprammonium,
LiCl/DMAc, ionic liquids, and NMMO based lyocell. Cellulose 26(5):
2913-2940.
Scarascia-Mugnozza, G., Schettini,
E., Vox, G., Malinconico, M., Immirzi, B. & Pagliara, S. 2006. Mechanical
properties decay and morphological behaviour of biodegradable films for
agricultural mulching in real scale experiment. Polymer Degradation and Stability 91(11): 2801-2808.
Schettini, E., Vox, G., Candura, A.,
Malinconico, M., Immirzi, B. & Santagata, G. 2008. Starch-based films and
spray coatings as biodegradable alternatives to LDPE mulching films. In International
Symposium on High Technology for Greenhouse System Management: Greensys2007 801: 171-179.
Serrano-Ruiz, H., Martin-Closas, L.
& Pelacho, A.M. 2021. Biodegradable plastic mulches: Impact on the
agricultural biotic environment. Science of the Total Environment 750:
141228.
Sforzini, S., Oliveri, L., Chinaglia,
S. & Viarengo, A. 2016. Application of biotests for the determination of
soil ecotoxicity after exposure to biodegradable plastics. Frontiers in
Environmental Science 4: 1-12.
Shah, F. & Wu, W. 2020. Use of
plastic mulch in agriculture and strategies to mitigate the associated
environmental concerns. In Advances in Agronomy, Chapter 5, disunting
oleh Sparks, D.L. Massachusetts: Academic Press. 164: 231-287.
Sharif, A. & Hoque, M.E. 2019.
Renewable resource-based polymers. In Bio-based Polymers and Nanocomposites
- Preparation, Processing, Properties & Performance, disunting oleh
Jawaid, M. & Sanyang, M.L. Cham, Switzerland: Springer Nature Switzerland
AG. hlm. 1-28.
Siotto, M., Sezenna, E., Saponaro,
S., Innocenti, F.D., Tosin, M., Bonomo, L. & Mezzanotte, V. 2012. Kinetics
of monomer biodegradation in soil. Journal of Environmental Management 93(1): 31-37.
Siracusa, V. 2012. Food packaging
permeability behaviour: A report. International Journal of Polymer Science 2012:
1-11.
Stagnari, F., Galieni, A., Speca, S.,
Cafiero, G. & Pisante, M. 2014. Effects of straw mulch on growth and yield
of durum wheat during transition to conservation agriculture in Mediterranean
environment. Field Crops Research 167: 51-63.
Steinmetz, Z., Wollmann, C.,
Schaefer, M., Buchmann, C., David, J., Tröger, J., Muñoz, K., Frör, O. &
Schaumann, G.E. 2016. Plastic mulching in agriculture. Trading short-term
agronomic benefits for long-term soil degradation? Science of the Total
Environment 550: 690-705.
Tokiwa, Y., Calabia, B.P., Ugwu, C.U.
& Aiba, S. 2009. Biodegradability of plastics. International Journal of
Molecular Sciences 10(9): 3722-3742.
Tran, C.D. & Mututuvari, T.M.
2016. Cellulose, chitosan and keratin composite materials: Facile and
recyclable synthesis, conformation and properties. ACS Sustainable Chemistry
and Engineering 4(3): 1850-1861.
Trinh Tan, F., Cooper, D.G.,
Marić, M. & Nicell, J.A. 2008. Biodegradation of a synthetic
co-polyester by aerobic mesophilic microorganisms. Polymer Degradation and
Stability 93(8): 1479-1485.
Upjohn, B., Fenton, G. & Conyers,
M. 2005. Soil Acidity and Liming. Edisi
ke-3. NSW Department of Primary Industries: New South Wales. hlm. 1-24.
Vo, L.T.T., Široká, B., Manian, A.P.
& Bechtold, T. 2010. Functionalisation of cellulosic substrates by a facile
solventless method of introducing carbamate groups. Carbohydrate Polymers 82(4): 1191-1197.
Vox, G. & Schettini, E. 2007.
Evaluation of the radiometric properties of starch-based biodegradable films
for crop protection. Polymer Testing 26(5): 639-651.
Wang, L., Gruber, S. & Claupein,
W. 2012. Effects of woodchip mulch and barley intercropping on weeds in lentil
crops. Weed Research 52(2): 161-168.
Wang, W., Bai, Q., Liang, T., Bai, H.
& Liu, X. 2017. Preparation of amino-functionalized regenerated cellulose
membranes with high catalytic activity. International Journal of Biological
Macromolecules 102: 944-951.
Weißl, M., Niegelhell, K., Reishofer,
D., Zankel, A., Innerlohinger, J. & Spirk, S. 2018. Homogeneous cellulose
thin films by regeneration of cellulose xanthate: Properties and
characterization. Cellulose 25(1): 711-721.
Xia, G., Wan, J., Zhang, J., Zhang,
X., Xu, L., Wu, J., He, J. & Zhang, J. 2016. Cellulose-based films prepared
directly from waste newspapers via an ionic liquid. Carbohydrate Polymers 151: 223-229.
Xu, H., Huang, L., Xu, M., Qi, M.,
Yi, T., Mo, Q., Zhao, H., Huang, C., Wang, S. & Liu, Y. 2020. Preparation
and properties of cellulose-based films regenerated from waste corrugated
cardboards using [Amim]Cl/CaCl2. ACS Omega 5(37):
23743-23754.
Yang, Y., Li, P., Jiao, J., Yang, Z.,
Lv, M., Li, Y., Zhou, C., Wang, C., He, Z., Liu, Y. & Song, S. 2020.
Renewable sourced biodegradable mulches and their environment impact. Scientia
Horticulturae 268: 109375.
Zhang, L., Liu, H., Zheng, L., Zhang,
J., Du, Y. & Feng, H. 1996. Biodegradability of regenerated cellulose films
in soil. Industrial and Engineering Chemistry Research 35(12):
4682-4685.
Zhang, X., Xiao, N., Wang, H., Liu,
C. & Pan, X. 2018. Preparation and characterization of regenerated
cellulose film from a solution in lithium bromide molten salt hydrate. Polymers 10(6): 614.
Zhang, X., You, S., Tian, Y. &
Li, J. 2019. Comparison of plastic film, biodegradable paper and bio-based film
mulching for summer tomato production: Soil properties, plant growth, fruit
yield and fruit quality. Scientia Horticulturae 249: 38-48.
Zhao, G., Lyu, X., Lee, J., Cui, X.
& Chen, W.N. 2019. Biodegradable and transparent cellulose film prepared
eco-friendly from durian rind for packaging application. Food Packaging and
Shelf Life 21: 100345.
*Corresponding author; email:
kmsalleh@usm.my
|