Sains Malaysiana 51(9)(2022): 3043-3057

http://doi.org/10.17576/jsm-2022-5109-24

 

Potensi Sungkup Plastik daripada Filem Selulosa Terjana Semula: Suatu Ulasan

(Potential of Plastic Mulch From Regenerated Cellulose Film: A Review)

 

Nursyamimi Ahmad Ghazali1, Kushairi Mohd Salleh2,3,*, Nur Fathihah Jafri1 & Sarani Zakaria1

 

1Jabatan Fizik Gunaan, Fakulti Sains dan Teknologi, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia

2Bioresource Technology Division, School of Industrial Technology, Universiti Sains Malaysia, Penang 11800, Malaysia

3Renewable Biomass Transformation Cluster, School of Industrial Technology, Universiti Sains Malaysia, Penang 11800, Malaysia

 

Received: 9 July 2021/Accepted: 31 March 2022

 

Abstrak

Sungkup ialah bahan yang dihamparkan pada permukaan tanah, digunakan secara khusus untuk pertanian. Penggunaan sungkup plastik (SP) dalam bidang pertanian masih berterusan di seluruh dunia sejak berpuluh tahun yang lalu. Ia merupakan teknologi penting dalam pertanian yang meningkatkan hasil dan kualiti tanaman dengan penggunaan input air yang rendah. Bahan SP telah dikelaskan kepada dua kumpulan iaitu sungkup berasaskan petroleum dan sungkup berasaskan bahan semula jadi daripada sisa pertanian. Tanah tanpa sungkup mendorong kepada beberapa masalah seperti tanggalan zarah, adangan permukaan, kerakan dan padatan. Namun, penggunaan SP yang berlebihan dalam pertanian moden telah mengancam kelestarian keseluruhan ekosistem yang disebabkan oleh pengekalan sisa plastik pada persekitaran daratan dan akuatik. Oleh yang demikian, rantaian tanaman termasuklah tumbuhan, tanah dan air serta manusia juga terdedah kepada ancaman ini. Permasalahan ini telah mendorong kepada penghasilan sungkup plastik terbiodegradasi (SPB) seperti filem selulosa terjana semula (FSTS). Maka, ulasan kajian terhadap potensi SPB khususnya FSTS yang merangkumi fizikal, mekanikal, kimia dan sifat biodegradasi menjadi fokus utama dalam penulisan makalah ini.

 

Kata kunci: Penghasilan; produk berasaskan biosumber; produk hijau; sifat fizikal; sifat kimia; sifat mekanikal

 

Abstract

Mulch is a material spread on the soil surface, explicitly used for agriculture. The use of plastic mulch (PM) in agriculture has continued worldwide for the past decades. It is an important technology in agriculture that improves crop yields and quality with low water input consumption. PM materials have been classified into two groups, petroleum-based mulches and mulches based on natural materials or agricultural waste. Soil without mulch leads to several problems such as particle detachment, surface sealing, crusting, and soil compaction. However, the excessive use of PM in modern agriculture has threatened the sustainability of the entire ecosystem due to the retention of plastic waste in terrestrial and aquatic environments. Therefore, crop chains including plants, soil, and water and humans are also vulnerable to this threat. This problem has led to biodegradable plastic mulch (BPM) production, such as regenerated cellulose film (RCF). Therefore, a review on BPM, specifically RCF based on their physical, mechanical, chemical and biodegradable properties, is the main focus in writing this paper.

Keywords: Bioresource based products; chemical properties; mechanical properties; green products; mechanical properties; physical properties; production

 

 

REFERENCES

Adhikari, R., Bristow, K.L., Casey, P.S., Freischmidt, G., Hornbuckle, J.W. & Adhikari, B. 2016. Preformed and sprayable polymeric mulch film to improve agricultural water use efficiency. Agricultural Water Management 169: 1-13.

Ai, B., Zheng, L., Li, W., Zheng, X., Yang, Y., Xiao, D., Shi, J. & Sheng, Z. 2021. Biodegradable cellulose film prepared from banana pseudo-stem using an ionic liquid for mango preservation. Frontiers in Plant Science 12: 1-10.

Akhtar, K., Wang, W., Ren, G., Khan, A., Feng, Y. & Yang, G. 2018. Changes in soil enzymes, soil properties, and maize crop productivity under wheat straw mulching in Guanzhong, China. Soil and Tillage Research 182(95): 94-102.

Amalini, A.N., Haida, M.K.N., Imran, K. & Haafiz, M.K.M. 2019. Relationship between dissolution temperature and properties of oil palm biomass based-regenerated cellulose films prepared via ionic liquid. Materials Chemistry and Physics 221: 382-389.

Amran, U.A., Zakaria, S., Chia, C.H., Fang, Z. & Masli, M.Z. 2017. Production of liquefied oil palm empty fruit bunch based polyols via microwave heating. Energy and Fuels 31(10): 10975-10982.

Andrady, A.L. & Neal, M.A. 2009. Applications and societal benefits of plastics. Philosophical Transactions of the Royal Society B: Biological Sciences 364(1526): 1977-1984.

Ardisson, G.B., Tosin, M., Barbale, M. & Degli-Innocenti, F. 2014. Biodegradation of plastics in soil and effects on nitrification activity. A laboratory approach. Frontiers in Microbiology 5(475): 710.

Armir, N.A.Z., Zulkifli, A., Gunaseelan, S., Palanivelu, S.D., Salleh, K.M., Othman, M.H.C. & Zakaria, S. 2021. Regenerated cellulose products for agricultural and their potential: A review. Polymers 13(20): 1-29.

Azahari, N.A., Zakaria, S., Kaco, H., Yee, G.S., Chia, C.H., Jaafar, S.N.S. & Sajab, M.S. 2017. Membran selulosa kenaf terjana semula daripada larutan akues NaOH/Urea yang digumpal menggunakan asid sulfurik. Sains Malaysiana 46(5): 795-801.

Bandopadhyay, S., Martin-Closas, L., Pelacho, A.M. & DeBruyn, J.M. 2018. Biodegradable plastic mulch films: Impacts on soil microbial communities and ecosystem functions. Frontiers in Microbiology 9: 1-7.

Bilck, A.P., Grossmann, M.V.E. & Yamashita, F. 2010. Biodegradable mulch films for strawberry production. Polymer Testing 29(4): 471-476.

Briassoulis, D. & Giannoulis, A. 2018. Evaluation of the functionality of bio-based plastic mulching films. Polymer Testing 67: 99-109.

Brodhagen, M., Peyron, M., Miles, C. & Inglis, D.A. 2015. Biodegradable plastic agricultural mulches and key features of microbial degradation. Applied Microbiology and Biotechnology 99(3): 1039-1056.

Chae, Y. & An, Y. 2018. Current research trends on plastic pollution and ecological impacts on the soil ecosystem: A review. Environmental Pollution 240: 387-395.

Chandra, R. & Rustgi, R. 1997. Biodegradation of maleated linear low-density polyethylene and starch blends. Polymer Degradation and Stability 56(2): 185-202.

Claro, P.I.C., Neto, A.R.S., Bibbo, A.C.C., Mattoso, L.H.C., Bastos, M.S.R. & Marconcini, J.M. 2016. Biodegradable blends with potential use in packaging: A comparison of PLA/chitosan and PLA/cellulose acetate films. Journal of Polymers and the Environment 24(4): 363-371.

Corbin, A., Cowan, J., Miles, C., Dorgan, J.R. & Inglis, D. 2013. Using biodegradable plastics as agricultural mulches. Washington State University Extension. pp. 1-6.

Deng, L., Yu, Y., Zhang, H., Wang, Q. & Yu, R. 2019. The effects of biodegradable mulch film on the growth, yield, and water use efficiency of cotton and maize in an arid region. Sustainability (Switzerland) 11(24): 1-15.

Doran, J.W. 1980. Microbial changes associated with residue management with reduced tillage. Soil Science Society of America Journal 44(5): 518-523.

Elias, S.A., Alderton, D., Cochran, J.K., Dellasala, D.A., Faccenna, C., Goldstein, M.I., Lajtha, K., Marshall, S., Mather, T.A., Nehrenheim, E., Schoof, J., Sinclair, H.D. & Smith, P.N. 2018. Reference Module in Earth Systems and Environmental Sciences. United States: Elsevier Inc.

Gan, S., Zakaria, S., Chia, C.H., Chen, R.S., Ellis, A.V. & Kaco, H. 2017. Highly porous regenerated cellulose hydrogel and aerogel prepared from hydrothermal synthesized cellulose carbamate. PLoS ONE 12(3): 1-13.

Gewert, B., Plassmann, M.M. & Macleod, M. 2015. Pathways for degradation of plastic polymers floating in the marine environment. Environmental Sciences: Processes and Impacts 17(9): 1513-1521.

Ghaderi, M., Mousavi, M., Yousefi, H. & Labbafi, M. 2014. All-cellulose nanocomposite film made from bagasse cellulose nanofibers for food packaging application. Carbohydrate Polymers 104: 59-65.

Grewal, R., Sweesy, W., Jur, J.S. & Willoughby, J. 2012. Moisture vapor barrier properties of biopolymers for packaging materials. In Functional Materials from Renewable Sources, disunting oleh Liebner, F. & Rosenau, T. Oxford: American Chemical Society. hlm. 271-296.

Haque, M.A., Jahiruddin, M. & Clarke, D. 2018. Effect of plastic mulch on crop yield and land degradation in south coastal saline soils of Bangladesh. International Soil and Water Conservation Research 6(4): 317-324.

Huang, W., Wang, Y., Zhang, L. & Chen, L. 2016. Rapid dissolution of spruce cellulose in H2SO4 aqueous solution at low temperature. Cellulose 23(6): 3463-3473.

Jiménez, A., Fabra, M.J., Talens, P. & Chiralt, A. 2012. Effect of re-crystallization on tensile, optical and water vapour barrier properties of corn starch films containing fatty acids. Food Hydrocolloids 26(1): 302-310.

Kasirajan, S. & Ngouajio, M. 2012. Polyethylene and biodegradable mulches for agricultural applications: A review. Agronomy for Sustainable Development 32(2): 501-529.

Klemm, D., Heublein, B., Fink, H.P. & Bohn, A. 2005. Cellulose: Fascinating biopolymer and sustainable raw material. Angewandte Chemie - International Edition 44(22): 3358-3393.

Lal, R. 1974. Soil temperature, soil moisture and maize yield from mulched and unmulched tropical soils. Plant and Soil 40(1): 129-143.

Lamont, W.J. 2005. Plastics: Modifying the microclimate for the production of vegetable crops. HortTechnology 15(3): 477-481.

Leppänen, I., Vikman, M., Harlin, A. & Orelma, H. 2020. Enzymatic degradation and pilot-scale composting of cellulose-based films with different chemical structures. Journal of Polymers and the Environment 28(2): 458-470.

Liang, W., Zhao, Y., Xiao, D., Cheng, J. & Zhao, J. 2020. A biodegradable water-triggered chitosan/hydroxypropyl methylcellulose pesticide mulch film for sustained control of Phytophthora sojae in soybean (Glycine max L. Merr.). Journal of Cleaner Production 245: 118943.

Liu, E., Zhang, L., Dong, W. & Yan, C. 2021. Biodegradable plastic mulch films in agriculture: Feasibility and challenges. Environmental Research Letters 16(1): 011004.

Liu, J., Zhu, L., Luo, S., Bu, L., Chen, X., Yue, S. & Li, S. 2014. Response of nitrous oxide emission to soil mulching and nitrogen fertilization in semi-arid farmland. Agriculture, Ecosystems and Environment 188: 20-28.

Luo, J., Chen, Z. & Zhang, K.Y. 2013. Preparation and characterization of biodegradable cotton mulching film. Applied Mechanics and Materials 368-370: 791-794.

Marichal-Gallardo, P., Pieler, M.M., Wolff, M.W. & Reichl, U. 2017. Steric exclusion chromatography for purification of cell culture-derived influenza A virus using regenerated cellulose membranes and polyethylene glycol. Journal of Chromatography A 1483: 110-119.

Moebius-Clune, B.N., Moebius-Clune, D.J., Gugino, B.K., Idowu, O.J., Schindelbeck, R.R., Ristow, A.J., van Es, H.M., Thies, J.E., Shayler, H.A., McBride, M.B., Wolfe, D.W. & Abawi, G.S. 2016. Comprehensive Assessment of Soil Health - The Cornell Framework. Ithaca, New York. Cornell University.

Mohan, S.K. & Srivastava, T. 2010. Microbial deterioration and degradation of polymeric materials. Journal of Biochemical Technology 2(4): 210-215.

Mutetwa, M. & Mtaita, T. 2014. Effects of mulching and fertilizer sources on growth and yield of onion. Journal of Global Innovations in Agricultural and Social Sciences 2(3): 102-106.

Ning, R., Liang, J., Sun, Z., Liu, X. & Sun, W. 2021. Preparation and characterization of black biodegradable mulch films from multiple biomass materials. Polymer Degradation and Stability 183: 109411.

Nur Aimi, M.N., Anura, H., Maizirwan, M., Sapuan, S.M., Wahit, M.U. & Zakaria, S. 2015. Preparation of durian skin nanofibre (DSNF) and its effect on the properties of polylactic acid (PLA) biocomposites. Sains Malaysiana 44(11): 1551-1559.

Pang, J., Liu, X., Zhang, X., Wu, Y. & Sun, R. 2013. Fabrication of cellulose film with enhanced mechanical properties in ionic liquid 1-allyl-3-methylimidaxolium chloride (AmimCl). Materials 6(4): 1270-1284.

Pang, J., Wu, M., Zhang, Q., Tan, X., Xu, F., Zhang, X. & Sun, R. 2015. Comparison of physical properties of regenerated cellulose films fabricated with different cellulose feedstocks in ionic liquid. Carbohydrate Polymers 121: 71-78.

Perotto, G., Ceseracciu, L., Simonutti, R., Paul, U.C., Guzman-Puyol, S., Tran, T.N., Bayer, I.S. & Athanassiou, A. 2018. Bioplastics from vegetable waste: Via an eco-friendly water-based process. Green Chemistry 20(4): 894-902.

Qi, H., Chang, C. & Zhang, L. 2009. Properties and applications of biodegradable transparent and photoluminescent cellulose films prepared via a green process. Green Chemistry 11(2): 177-184.

Ramakrishna, A., Tam, H.M., Wani, S.P. & Long, T.D. 2006. Effect of mulch on soil temperature, moisture, weed infestation and yield of groundnut in northern Vietnam. Field Crops Research 95(2-3): 115-125.

Ramos, L., Berenstein, G., Hughes, E.A., Zalts, A. & Montserrat, J.M. 2015. Polyethylene film incorporation into the horticultural soil of small periurban production units in Argentina. Science of the Total Environment 523: 74-81.

Ranjan, P., Patle, G.T., Prem, M. & Solanke, K.R. 2017. Organic mulching- a water saving technique to increase the production of fruits and vegetables. Current Agriculture Research Journal 5(3): 371-380.

Saidi, A.S.M., Zakaria, S., Chia, C.H., Jaafar, S.N.S. & Padzil, F.N.M. 2016. Physico-mechanical properties of kenaf pulp cellulose membrane cross-linked with glyoxal. Sains Malaysiana 45(2): 263-270.

Salleh, K.M., Zakaria, S., Sajab, M.S., Gan, S., Chia, C.H., Jaafar, S.N.S. & Amran, U.A. 2018. Chemically crosslinked hydrogel and its driving force towards superabsorbent behaviour. International Journal of Biological Macromolecules 118: 1422-1430.

Sayyed, A.J., Deshmukh, N.A. & Pinjari, D.V. 2019. A critical review of manufacturing processes used in regenerated cellulosic fibres: Viscose, cellulose acetate, cuprammonium, LiCl/DMAc, ionic liquids, and NMMO based lyocell. Cellulose 26(5): 2913-2940.

Scarascia-Mugnozza, G., Schettini, E., Vox, G., Malinconico, M., Immirzi, B. & Pagliara, S. 2006. Mechanical properties decay and morphological behaviour of biodegradable films for agricultural mulching in real scale experiment. Polymer Degradation and Stability 91(11): 2801-2808.

Schettini, E., Vox, G., Candura, A., Malinconico, M., Immirzi, B. & Santagata, G. 2008. Starch-based films and spray coatings as biodegradable alternatives to LDPE mulching films. In International Symposium on High Technology for Greenhouse System Management: Greensys2007 801: 171-179.

Serrano-Ruiz, H., Martin-Closas, L. & Pelacho, A.M. 2021. Biodegradable plastic mulches: Impact on the agricultural biotic environment. Science of the Total Environment 750: 141228.

Sforzini, S., Oliveri, L., Chinaglia, S. & Viarengo, A. 2016. Application of biotests for the determination of soil ecotoxicity after exposure to biodegradable plastics. Frontiers in Environmental Science 4: 1-12.

Shah, F. & Wu, W. 2020. Use of plastic mulch in agriculture and strategies to mitigate the associated environmental concerns. In Advances in Agronomy, Chapter 5, disunting oleh Sparks, D.L. Massachusetts: Academic Press. 164: 231-287.

Sharif, A. & Hoque, M.E. 2019. Renewable resource-based polymers. In Bio-based Polymers and Nanocomposites - Preparation, Processing, Properties & Performance, disunting oleh Jawaid, M. & Sanyang, M.L. Cham, Switzerland: Springer Nature Switzerland AG. hlm. 1-28.

Siotto, M., Sezenna, E., Saponaro, S., Innocenti, F.D., Tosin, M., Bonomo, L. & Mezzanotte, V. 2012. Kinetics of monomer biodegradation in soil. Journal of Environmental Management 93(1): 31-37.

Siracusa, V. 2012. Food packaging permeability behaviour: A report. International Journal of Polymer Science 2012: 1-11.

Stagnari, F., Galieni, A., Speca, S., Cafiero, G. & Pisante, M. 2014. Effects of straw mulch on growth and yield of durum wheat during transition to conservation agriculture in Mediterranean environment. Field Crops Research 167: 51-63.

Steinmetz, Z., Wollmann, C., Schaefer, M., Buchmann, C., David, J., Tröger, J., Muñoz, K., Frör, O. & Schaumann, G.E. 2016. Plastic mulching in agriculture. Trading short-term agronomic benefits for long-term soil degradation? Science of the Total Environment 550: 690-705.

Tokiwa, Y., Calabia, B.P., Ugwu, C.U. & Aiba, S. 2009. Biodegradability of plastics. International Journal of Molecular Sciences 10(9): 3722-3742.

Tran, C.D. & Mututuvari, T.M. 2016. Cellulose, chitosan and keratin composite materials: Facile and recyclable synthesis, conformation and properties. ACS Sustainable Chemistry and Engineering 4(3): 1850-1861.

Trinh Tan, F., Cooper, D.G., Marić, M. & Nicell, J.A. 2008. Biodegradation of a synthetic co-polyester by aerobic mesophilic microorganisms. Polymer Degradation and Stability 93(8): 1479-1485.

Upjohn, B., Fenton, G. & Conyers, M. 2005. Soil Acidity and Liming. Edisi ke-3. NSW Department of Primary Industries: New South Wales. hlm. 1-24.

Vo, L.T.T., Široká, B., Manian, A.P. & Bechtold, T. 2010. Functionalisation of cellulosic substrates by a facile solventless method of introducing carbamate groups. Carbohydrate Polymers 82(4): 1191-1197.

Vox, G. & Schettini, E. 2007. Evaluation of the radiometric properties of starch-based biodegradable films for crop protection. Polymer Testing 26(5): 639-651.

Wang, L., Gruber, S. & Claupein, W. 2012. Effects of woodchip mulch and barley intercropping on weeds in lentil crops. Weed Research 52(2): 161-168.

Wang, W., Bai, Q., Liang, T., Bai, H. & Liu, X. 2017. Preparation of amino-functionalized regenerated cellulose membranes with high catalytic activity. International Journal of Biological Macromolecules 102: 944-951.

Weißl, M., Niegelhell, K., Reishofer, D., Zankel, A., Innerlohinger, J. & Spirk, S. 2018. Homogeneous cellulose thin films by regeneration of cellulose xanthate: Properties and characterization. Cellulose 25(1): 711-721.

Xia, G., Wan, J., Zhang, J., Zhang, X., Xu, L., Wu, J., He, J. & Zhang, J. 2016. Cellulose-based films prepared directly from waste newspapers via an ionic liquid. Carbohydrate Polymers 151: 223-229.

Xu, H., Huang, L., Xu, M., Qi, M., Yi, T., Mo, Q., Zhao, H., Huang, C., Wang, S. & Liu, Y. 2020. Preparation and properties of cellulose-based films regenerated from waste corrugated cardboards using [Amim]Cl/CaCl2. ACS Omega 5(37): 23743-23754.

Yang, Y., Li, P., Jiao, J., Yang, Z., Lv, M., Li, Y., Zhou, C., Wang, C., He, Z., Liu, Y. & Song, S. 2020. Renewable sourced biodegradable mulches and their environment impact. Scientia Horticulturae 268: 109375.

Zhang, L., Liu, H., Zheng, L., Zhang, J., Du, Y. & Feng, H. 1996. Biodegradability of regenerated cellulose films in soil. Industrial and Engineering Chemistry Research 35(12): 4682-4685.

Zhang, X., Xiao, N., Wang, H., Liu, C. & Pan, X. 2018. Preparation and characterization of regenerated cellulose film from a solution in lithium bromide molten salt hydrate. Polymers 10(6): 614.

Zhang, X., You, S., Tian, Y. & Li, J. 2019. Comparison of plastic film, biodegradable paper and bio-based film mulching for summer tomato production: Soil properties, plant growth, fruit yield and fruit quality. Scientia Horticulturae 249: 38-48.

Zhao, G., Lyu, X., Lee, J., Cui, X. & Chen, W.N. 2019. Biodegradable and transparent cellulose film prepared eco-friendly from durian rind for packaging application. Food Packaging and Shelf Life 21: 100345.

 

*Corresponding author; email: kmsalleh@usm.my

 

 

 

 

previous