Sains Malaysiana 51(9)(2022):
3069-3079
http://doi.org/10.17576/jsm-2022-5109-26
Perbandingan Penghasilan Siderofor daripada Bacillus aryabhattai, Bacillus megaterium dan Bacillus cereus
(Comparison of Siderophore Production by Bacillus aryabhattai,
Bacillus megaterium, and Bacillus cereus)
LEE SHIN YIN1, YONG SHIH NEE2,
KUAN SENG HOW2,3 & SYLVIA CHIENG1,*
1Department of Biological Sciences and Biotechnology,
Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi,
Selangor Darul Ehsan, Malaysia
2Department of Mechanical and Material Engineering, Lee
Kong Chian Faculty of Engineering and Science, Universiti Tunku Abdul Rahman, Sg
Long Campus, 43000 Kajang, Selangor Darul Ehsan, Malaysia
3Centre for Photonics and Advanced Materials Research, Universiti Tunku Abdul Rahman, Sg
Long Campus, 43000 Kajang, Selangor Darul Ehsan, Malaysia
Received:
14 March 2022/Accepted: 10 May 2022
Abstrak
Besi
merupakan unsur yang penting bagi proses metabolisme organisma seperti kitar
asid trikarboksilik, pengangkutan elektron dan fosforilasi oksidatif. Walau
bagaimanapun, sumber besi di persekitaran luar sentiasa berada dalam bentuk
kompleks yang tidak tersedia untuk pengambilan terus. Bagi mengatasi pengehadan
besi, mikroorganisma berupaya untuk menghasilkan siderofor, sejenis pengkelat
Fe(III) yang berafinan tinggi. Salah satu genus bakteria yang dapat
menghasilkan siderofor adalah Bacillus. Dalam kajian ini, penghasilan
dan keupayaan pengkompleksan siderofor Bacillus cereus, Bacillus
megaterium dan Bacillus aryabhattai ditentukan melalui asai piring
agar dan cecair krom azurol S (CAS). Kesan sumber karbon (glukosa, maltosa dan
gliserol) ke atas penghasilan siderofor oleh Bacillus turut dikaji.
Hasil kajian telah menunjukkan bahawa B. cereus yang dikulturkan dalam
kaldu LB berupaya untuk menghasilkan siderofor yang tertinggi berbanding B.
aryabhattai dan B. megaterium. Siderofor yang dihasilkan oleh ketiga-tiga
spesies berupaya untuk berkompleks dengan Mn(II), Zn(II) dan Cu(II).
Hasil kajian turut menunjukkan pengkulturan dengan maltosa telah memberikan penghasilan siderofor yang paling tinggi bagi B. aryabhattai dan B. megaterium.
Kata kunci: Bacillus aryabhattai; Bacillus cereus; Bacillus megaterium; siderofor
Abstract
Iron is an
essential element for metabolic processes of organisms such as the
tricarboxylic acid cycle, electron transport, and oxidative phophorylation.
However, iron resources in the environment are always in complex forms that are
not readily available for direct intake. To overcome iron limitation,
microorganisms are able to produce a high affinity Fe(III) chelator, known as
siderophore. One of the bacterial genus that can produced siderophore is Bacillus.
In this study, the production and complexing ability of siderophore from Bacillus
cereus, Bacillus megaterium, and Bacillus aryabhattai were
determined through chrome azurol S (CAS) agar plate and liquid assay. The
effect of carbon sources (glucose, maltose and glycerol) on siderophore
production by the bacteria were also studied. The results demonstrated the
ability of B. cereus to produce the most siderophore in LB broth in
comparison to B. aryabhattai and B. megaterium. Siderophores
produced by all three species were capable of complexing with Mn(II), Zn(II)
and Cu(II). The results also showed that production of siderophore was the most
effective with maltose as carbon source for B. aryabhattai and B.
megaterium.
Keywords: Bacillus aryabhattai; Bacillus cereus; Bacillus megaterium; siderophore
REFERENCES
Alexander, D.B.
& Zuberer, D.A. 1991. Use of chrome azurol S reagents to evaluate
siderophore production by rhizosphere bacteria. Biology and Fertility of
Soils 12(1): 39-45.
Bhattacharyya,
C., Bakshi, U., Mallick, I., Mukherji, S., Bera, B. & Ghosh, A. 2017.
Genome-guided insights into the plant growth promotion capabilities of the
physiologically versatile Bacillus
aryabhattai strain AB211. Frontiers in Microbiology 8(MAR): 1-16.
Costa,
O.Y.A., Oguejiofor, C., Zühlke, D., Barreto, C.C., Wünsche, C., Riedel, K.
& Kuramae, E.E. 2020. Impact of different trace elements on the growth and
proteome of two strains of Granulicella, Class “Acidobacteriia.” Frontiers
in Microbiology 11(June): 1-16.
Cornelis,
P. 2010. Iron uptake and metabolism in pseudomonads. Applied Microbiology
and Biotechnology 86(6): 1637-1645.
Crowle, A.J. 1973. Immunodiffusion.
2nd ed. Massachusetts: Academic Press. pp. 65-206.
Dahmani,
M.A., Desrut, A., Moumen, B., Verdon, J., Mermouri, L., Kacem, M.,
Coutos-Thévenot, P., Kaid-Harche, M., Bergès, T. & Vriet, C. 2020.
Unearthing the plant growth-promoting traits of Bacillus megaterium RmBm31, an endophytic bacterium isolated from
root nodules of Retama monosperma. Frontiers
in Plant Science 11(February): 1-15.
Danial,
E.N. & Al-Bishri, W.M. 2020. Optimization of medium composition for
increased production of tyrosinase enzyme in recombinant Bacillus megaterium. Research Journal of Pharmaceutical,
Biological and Chemical Sciences 9(1): 480-486.
Dias,
M.P., Bastos, M.S., Xavier, V.B., Cassel, E., Astarita, L.V. & Santarém,
E.R. 2017. Plant growth and resistance promoted by Streptomyces spp. in tomato. Plant Physiology and Biochemistry 118: 479-493.
Duport,
C., Jobin, M. & Schmitt, P. 2016. Adaptation in Bacillus cereus: From stress to disease. Frontiers in
Microbiology 7(OCT): 1-18.
Ferreira,
C.M.H., Boas, Â.V., Sousa, C.A., Soares, H.M.V.M. & Soares, E.V. 2019.
Comparison of five bacterial strains producing siderophores with ability to
chelate iron under alkaline conditions. AMB Express 9: 78.
Hayrapetyan, H., Siezen, R., Abee, T. & Groot, M.N.
2016. Comparative genomics of iron-transporting systems in Bacillus cereus strains and impact of iron sources on growth and biofilm formation. Frontiers
in Microbiology 7(JUN): 1-13.
Hider,
R.C. & Kong, X. 2010. Chemistry and biology of siderophores. Natural
Product Reports 27(5): 637-657.
Huang,
Y., Jiang, Y., Wang, H., Wang, J., Shin, M.C., Byun, Y., He, H., Liang, Y.
& Yang, V.C. 2011. Curb challenges of the “Trojan horse” approach: Smart
strategies in achieving effective yet safe cell-penetrating peptide-based drug
delivery. Bone 23(1): 1-7.
Ijaz,
A., Mumtaz, M.Z., Wang, X., Ahmad, M., Saqib, M., Maqbool, H., Zaheer, A.,
Wang, W. & Mustafa, A. 2021. Insights into manganese solubilizing Bacillus spp. for improving plant growth
and manganese uptake in maize. Frontiers in Plant Science 12(November):
1-18.
Jun,
Y.H., Nee, Y.S., Qi, C.W., Chieng, S. & How, K.S. 2020. Bioleaching of
kaolin with Bacillus cereus: Effects
of bacteria source and concentration on iron removal. Journal of
Sustainability Science and Management 15(4): 91-99.
Kell,
D.B., Heyden, E.L. & Pretorius, E. 2020. The biology of lactoferrin, an
iron-binding protein that can help defend against viruses and bacteria. Frontiers
in Immunology 11: 0-2.
Ladomersky,
E. & Petris, M.J. 2015. Copper tolerance and virulence. Metallomics 7(6): 957-964.
Lakshmanan, V., Shantharaj, D., Li, G., Seyfferth, A.L.,
Janine Sherrier, D. & Bais, H.P. 2015. A natural rice rhizospheric
bacterium abates arsenic accumulation in rice (Oryza sativa L.). Planta 242(4): 1037-1050.
Lewis,
K., Epstein, S., D’Onofrio, A. & Ling, L.L. 2010. Uncultured microorganisms
as a source of secondary metabolites. Journal of Antibiotics 63(8):
468-476.
Maleki,
M., Norouzpour, S., Rezvannejad, E. & Shakeri, S. 2018. Novel strains of Bacillus cereus Wah1 and Enterobacter cloacae Wkh with high
potential for production of siderophores. Biological Journal of
Microorganism 6(24): 1-11.
Miethke,
M. & Marahiel, M.A. 2007. Siderophore-based iron acquisition and pathogen
control. Microbiology and Molecular Biology Reviews 71(3): 413-451.
Parker,
D.L., Sposito, G. & Tebo, B.M. 2004. Manganese(III) binding to a pyoverdine
siderophore produced by a manganese(II)-oxidizing bacterium. Geochimica et
Cosmochimica Acta 68(23): 4809-4820.
Patel,
P.R., Shaikh, S.S. & Sayyed, R.Z. 2018. Modified chrome azurol S method for
detection and estimation of siderophores having affinity for metal ions other
than iron. Environmental Sustainability 1(1): 81-87.
Payne,
S.M. 1994. Detection, isolation, and characterization of siderophores. Methods
in Enzymology 205(Ii): 205-213.
Pereira,
D.G., Afonso, A. & Medeiros, F.M. 2015. Overview of Friedmans test and
post-hoc analysis. Communications in Statistics: Simulation and Computation 44(10): 2636-2653.
Puig, S., Ramos-Alonso,
L., Romero, A.M. & Martínez-Pastor, M.T. 2017. The elemental role of iron
in DNA synthesis and repair. Metallomics 9(11): 1483-1500.
Rodríguez-Rojas,
A., Makarova, O., Müller, U. & Rolff, J. 2015. Cationic peptides facilitate
iron-induced mutagenesis in bacteria. PLoS Genetics 11(10): 1-16.
Rungin,
S., Indananda, C., Suttiviriya, P., Kruasuwan, W., Jaemsaeng, R. &
Thamchaipenet, A. 2012. Plant growth enhancing effects by a siderophore-producing
endophytic streptomycete isolated from a Thai jasmine rice plant (Oryza sativa L. cv. KDML105). Antonie
van Leeuwenhoek, International Journal of General and Molecular Microbiology 102(3): 463-472.
Santos,
S., Neto, I.F.F., Machado, M.D., Soares, H.M.V.M. & Soares, E.V. 2014.
Siderophore production by Bacillus
megaterium: Effect of growth phase and cultural conditions. Applied
Biochemistry and Biotechnology 172(1): 549-560.
Saravanan,
V.S., Subramoniam, S.R. & Raj, S.A. 2004. Assessing in vitro solubilization potential of different zinc solubilizing
bacterial (ZSB) isolates. Brazilian Journal of Microbiology 35(1-2):
121-125.
Shakeel,
M., Rais, A., Hassan, M.N. & Hafeez, F.Y. 2015. Root associated Bacillus sp. improves growth, yield and
zinc translocation for basmati rice (Oryza
sativa) varieties. Frontiers in Microbiology 6(NOV): 1-12.
Sinha,
A.K., Parli Venkateswaran, B., Tripathy, S.C., Sarkar, A. & Prabhakaran, S.
2018. Effects of growth conditions on siderophore producing bacteria and
siderophore production from Indian Ocean sector of Southern Ocean. Journal
of Basic Microbiology 59(4): 412-424.
Smith,
A.D., Modi, A.R., Sun, S., Dawson, J.H. & Wilks, A. 2015. Spectroscopic
determination of distinct heme ligands in outer-membrane receptors PhuR and
HasR of Pseudomonas aeruginosa. Biochemistry 54(16): 2601-2612.
Srimathi,
K. & Suji, H.A. 2018. Siderophores detection by using blue agar CAS assay
methods. International Journal of Scientific Research in Biological Sciences 5(6): 180-185.
Wang,
F., Xu, Z., Wang, C., Guo, Z., Yuan, Z., Kang, H., Li, J., Lu, F. & Liu, Y.
2021. Biochemical characterization of a tyrosinase from Bacillus aryabhattai and its application. International Journal of Biological Macromolecules 176: 37-46.
Yu,
S., Teng, C., Bai, X., Liang, J., Song, T., Dong, L., Jin, Y. & Qu, J.
2017. Optimization of siderophore production by Bacillus sp. PZ-1 and
its potential enhancement of phytoextration of PB from soil. Journal of
Microbiology and Biotechnology 27(8): 1500.
Zhang, J.,
Wang, H., Huang, Q., Zhang, Y., Zhao, L., Liu, F. & Wang, G. 2020. Four
superoxide dismutases of Bacillus cereus 0–9 are non-redundant and
perform different functions in diverse living conditions. World Journal of
Microbiology and Biotechnology 36(1): 1-12.
*Corresponding author; email:
sylvia@ukm.edu.my
|