Sains Malaysiana 51(9)(2022):
3113-3123
http://doi.org/10.17576/jsm-2022-5109-30
Pencirian Permukaan Kakisan Keluli Karbon dengan Kehadiran Konsortium Bakteria Penurun Sulfat dalam Persekitaran Bergas CO2
(Surface
Characteristics of Carbon Steels in the Presence of Sulfate Reducing Bacteria Consortiums in CO2 Gas Environment)
RABIAHTUL ZULKAFLI1,
NORINSAN KAMIL OTHMAN*1 & NAJMIDDIN YAAKOB2
1Department
of Applied Physics, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi,
Selangor Darul Ehsan, Malaysia
2Centre
of Industrial Process Reliability and Sustainability (INPRES), School of
Chemical Engineering, College of Engineering, Universiti Teknologi MARA, 40450, Shah Alam,
Selangor Darul Ehsan, Malaysia
Received: 11 March 2022/Accepted:
22 June 2022
Abstrak
Tingkah laku kakisan keluli karbon API 5L X65 dengan kehadiran bakteria penurun sulfat (SRB) dalam persekitaran CO2 adalah dikaji. Uji kaji yang dijalankan bagi meneliti tingkah laku kakisan adalah ujian kehilangan berat dan analisis permukaan. Spesimen keluli karbon didedahkan kepada medium kawalan (tanpa konsortium bakteria) dan dengan kehadiran konsortium SRB selama 10 hari dalam aliran gas CO2 yang berterusan. Biofilem, produk kakisan dan kedalaman lubang yang terhasil dicirikan dengan mikroskopi elektron imbasan pancaran medan (FESEM), spektroskopi tenaga serakan (EDS), mikroskop fokus tak terhingga (IFM) dan belauan sinar-x
(XRD). Keputusan daripada ujian kehilangan berat mengesahkan bahawa spesimen dalam keadaan kawalan membentuk kakisan seragam. Manakala analisis IFM membuktikan bahawa sampel dengan kehadiran konsortium SRB menggalakkan penghasilan kakisan setempat. Hal ini merujuk kepada nilai kadar penembusan liang yang lebih tinggi daripada kadar kakisan seragam dengan kehadiran konsortium SRB. Penelitian menerusi FESEM-EDS membuktikan kehadiran sulfur pada spesimen logam yang terdedah kepada SRB dalam persekitaran CO2 yang menyokong pembentukan lapisan FeS. Seterusnya, pencirian XRD mengesahkan pembentukan Fe3C dan FeS dalam sampel yang terdedah kepada SRB.
Kata kunci: Analisis permukaan; kakisan CO2; kakisan setempat; konsortium SRB
Abstract
This paper studies the corrosion
behaviour of API 5L X65 carbon steel in the presence of sulfate-reducing
bacteria (SRB) in a CO2 environment. The experiments carried out to
examine the behaviour of corrosion were weight loss test and surface analysis.
The carbon steel specimens were exposed to a control medium (without the
presence bacteria consortium) and with the presence of SRB consortium for ten
days under a continuous flow of CO2 gas. The corrosion products,
inclusive of biofilm formations and pit penetrations, were characterised by
field emission scanning electron microscopy (FESEM), energy dispersive
spectrometer (EDS), infinite focus microscopy (IFM) and x-ray diffraction
(XRD). Results from the weight loss test confirmed that the specimens in the control
condition (without SRB) formed uniform corrosion. In comparison, the IFM
analysis proved that samples with the presence of SRB consortium promote
localised corrosion. The localised corrosion event refers to a higher
penetration rate value than the uniform corrosion rate in the SRB consortium.
FESEM-EDS analyses proved the presence of sulfur on
metal specimens exposed to SRB in a CO2 environment which supported
the formation of FeS layers. Furthermore, XRD
characterisation confirmed the formation of Fe3C and FeS in samples exposed to SRB.
Keywords:
CO2 corrosion; localised corrosion; SRB consortium; surface analysis
REFERENCES
Abdullah,
A., Yahaya, N., Norhazilan, M.N. & Rasol, R.M. 2014. Microbial corrosion of API 5L X-70 carbon
steel by ATCC 7757 and consortium of sulfate-reducing
bacteria. Journal of Chemistry 2014:
Article ID. 130345.
Al-Mathami, A., Saricimen, H., Kahraman, R., Al-Zahrani, M. & Al-Dulaijan,
S. 2004. Inhibition of atmospheric corrosion of mild steel by sodium dihydrogen
orthophosphate treatment. Anti-Corrosion
Methods and Materials 51(2): 121-129.
Almeida,
P.F., Almeida, R.C.C., Carvalho, E.B., Souza, E.R., Carvalho, A.S., Silva,
C.H.T.P. & Taft, C.A. 2006. Overview of sulfate-reducing
bacteria and strategies to control biosulfide generation in oil waters. In Modern
Biotechnology in Medical Chemistry and Industry. 1st ed. Chapter 9, edited
by Taft, C.A. Research Signpost.
Bai, H.,
Wang, Y., Ma, Y., Zhang, Q. & Zhang, N. 2018. Effect of CO2 partial pressure on the corrosion behavior of J55
carbon steel in 30% crude oil/brine mixture. Materials 11(9): 1765-1780.
Bueno,
A.H.S., Solis, J., Zhao, H., Wang, C., Simões, T.A.,
Bryant, M. & Neville, A. 2018. Tribocorrosion evaluation of hydrogenated and silicon DLC coatings on carbon steel for use in
valves, pistons and pumps in oil and gas industry. Wear 394-395: 60-70.
Castaneda,
H. & Benetton, X.D. 2008. SRB-biofilm influence in active corrosion sites
formed at the steel-electrolyte interface when exposed to artificial seawater
conditions. Corrosion Science 50(4):
1169-1183.
De Paula,
M.S., Gonçalves, M.M.M., da Cruz Rola, M.A., Maciel, D.J., De Senna, L.F. & Do Lago, D.C.B. 2016.
Carbon steel corrosion induced by sulphate-reducing bacteria in artificial
seawater: Electrochemical and morphological characterizations. Revista Materia 21(4): 987-995.
Di
Bonaventura, M., Brown, B., Nešić, S. &
Singer, M. 2019. Effect of flow and steel microstructure on the formation of
iron carbonate. Corrosion 75(10):
1183-1193.
Elgadda, R., Naidu, A., Ahmed, R., Shah, S., Hassani,
S., Osisanya, S.O. & Saasen,
A. 2015. Modeling and experimental study of CO2 corrosion on carbon steel at elevated pressure and temperature. Journal of Natural Gas Science and
Engineering 27: 1620-1629.
Fan, M.M.,
Liu, H.F. & Dong, Z.H. 2013. Microbiologically influenced corrosion of X60
carbon steel in CO2-saturated oilfield flooding water. Materials and Corrosion 64(3): 242-246.
Feng, R.,
Beck, J.R., Hall, D.M., Buyuksagis, A., Ziomek-Moroz, M. & Lvov, S.N. 2018. Effects of CO2 and H2S on corrosion of martensitic steels in brines at low
temperature. Corrosion 74(3):
276-287.
Finšgar, M. & Jackson, J. 2014. Application of corrosion
inhibitors for steels in acidic media for the oil and gas industry: A review. Corrosion Science 86: 17-41.
Gao, S.,
Brown, B., Young, D. & Singer, M. 2018. Formation of iron oxide and iron sulfide at high temperature and their effects on corrosion. Corrosion Science 135: 167-176.
Guan, F., Zhai, X., Duan, J., Zhang, M.
& Hou, B. 2016. Influence of sulfate-reducing
bacteria on the corrosion behavior of high strength
steel eq70 under cathodic polarization. PLoS ONE 11(9):
e0162315.
Idris, M.N., Daud, A.R., Mahat, N., Sahrani, F.K. & Othman, N.K. 2016. Perlindungan biokakisan keluli karbon akibat bakteria penurun sulfat yang dipencil daripada minyak mentah tropika. Sains Malaysiana 45(12): 1835-1841.
Idris, M.N., Daud, A.R. & Othman, N.K. 2016. Analisis keberkesanan benziltrietilamonium klorida sebagai perencat kakisan bagi perlindungan keluli karbon. Sains Malaysiana 45(2): 271-277.
Kim, S.,
Lim, Y.I., Lee, D., Seo, M.W., Mun, T.Y. & Lee,
J.G. 2021. Effects of flue gas recirculation on energy, exergy, environment,
and economics in oxy-coal circulating fluidized-bed power plants with CO2 capture. International Journal of Energy
Research 45(4): 5852-5865.
Kosasang, O., Chumphongphan, S. & Wongkaewmoon, M. 2021. Effect of aging heat treatment on
corrosion behavior and corrosion kinetics of 17-4PH
stainless steel in artificial saliva. Sains Malaysiana 50(3): 849-858.
Li, Y.,
Feng, S., Liu, H., Tian, X., Xia, Y., Li, M., Xu, K., Yu, H.B., Liu, Q. &
Chen, C.F. 2020. Bacterial distribution in SRB biofilm affects MIC pitting of
carbon steel studied using FIB-SEM. Corrosion
Science 167: 108512.
Li, Y., Xu,
D., Chen, C., Li, X., Jia, R., Zhang, D., Sand, W., Wang, F. & Gu, T. 2018.
Anaerobic microbiologically influenced corrosion mechanisms interpreted using
bioenergetics and bioelectrochemistry: A review. Journal of Materials Science and Technology 34(10): 1713-1718.
Liu, H.
& Cheng, Y.F. 2018. Microbial corrosion of X52 pipeline steel under soil
with varied thicknesses soaked with a simulated soil solution containing sulfate-reducing bacteria and the associated galvanic
coupling effect. Electrochimica Acta 266: 312-325.
Liu, H.,
Meng, G., Li, W., Gu, T. & Liu, H. 2019. Microbiologically influenced
corrosion of carbon steel beneath a deposit in CO2-saturated
formation water containing Desulfotomaculum nigrificans. Frontiers
in Microbiology https://www.frontiersin.org/articles/10.3389/fmicb.2019.01298/full
Mahat, N.A., Othman, N.K., Sahrani,
F.K. & Idris, M.N. 2015. Inhibition of consortium sulfate reducing bacteria from crude oil for carbon steel protection. Sains Malaysiana 44(11): 1587-1591.
Pessu, F. & Barker, R. 2017. Pitting and uniform corrosion of
X65 carbon steel in sour corrosion environments: The influence of CO2,
H2S and temperature. Corrosion 73(5): 451-604.
Pessu, F., Barker, R. & Neville, A. 2015. The influence of pH
on localized corrosion behavior of X65 carbon steel
in CO2-saturated brines. Corrosion 71(12): 1452-1466.
Pessu, F., Barker, R. & Neville, A. 2017. Pitting and uniform
corrosion of X65 carbon steel in sour corrosion environments: The influence of
CO2, H2S, and temperature. Corrosion 73(9): 1168-1183.
Pessu, F., Hua, Y., Barker, R. & Neville, A. 2018. A study of
the pitting and uniform corrosion characteristics of X65 carbon steel in
different H2S-CO2-containing environments. Corrosion 74(8): 886-902.
Shah, M.,
Abdul Manap, N.R., Mawardi Ayob, M.T., Yaakob, N., Embong, Z. & Kamil Othman, N. 2021. Effect of pH2S
influence on austenitic stainless steel 316L corrosion behaviours in chloride
environment / Kesan pengaruh tekanan separa gas H2S terhadap tingkah laku kakisan keluli tahan karat 316L di persekitaran klorida. Malaysian
Journal of Civil Engineering 33(2): https://doi.org/10.11113/mjce.v33.16697
Sun, C.,
Sun, J., Wang, Y., Lin, X., Li, X., Cheng, X. & Liu, H. 2016. Synergistic
effect of O2, H2S and SO2 impurities on the
corrosion behavior of X65 steel in water-saturated
supercritical CO2 system. Corrosion
Science 107: 193-203.
Uttaruk, Y. & Laosuwan, T. 2019.
Development of prototype project for carbon storage and greenhouse gas emission
reduction from Thailand’s agricultural sector. Sains Malaysiana 48(10): 2083-2092.
Wu, T., Sun,
C., Xu, J., Yan, M., Yin, F. & Ke, W. 2018. A
study on bacteria-assisted cracking of X80 pipeline steel in soil environment. Corrosion Engineering Science and Technology 53(4): 265-275.
Yaakob, N., Singer, M. & Young, D. 2015. Elemental sulfur corrosion of carbon steel in the presence of sulfur solvent and monoethylene glycol. NACE - International Corrosion
Conference Series NACE-2015-5930.
Yu, H., Ma,
L., Li, Z. & Jiang, R. 2018. The microbiologically influenced corrosion of
L245NS carbon steel by sulfate-reducing bacteria in H2S
solutions. International Journal of
Electrochemical Science 13(10): 9416-9427.
Yuli Panca Asmara. 2018. The roles of
H2S gas in behavior of carbon steel corrosion in oil
and gas environment: A review. Jurnal Teknik Mesin (JTM) 7(1): 37-43.
Zhang, C.,
Zahedi Asl, V., Lu, Y. & Zhao, J. 2020.
Investigation of the corrosion inhibition performances of various inhibitors
for carbon steel in CO2 and CO2/H2S
environments. Corrosion Engineering
Science and Technology 55(7): 531-538.
*Corresponding author; email: insan@ukm.edu.my
|