Sains Malaysiana 52(1)(2023): 107-127

http://doi.org/10.17576/jsm-2023-5201-09

 

Prediction of the Thermophysical Properties of Papaya Seed Oil Influencing Solvent Selection Based on the New Group Contribution Model

(Ramalan Sifat Termofizik Minyak Biji Betik Mempengaruhi Pemilihan Pelarut Berdasarkan Model Sumbangan Kumpulan Baru)

 

MISBAHUDIN ALHANIF1,2, ANDRI CAHYO KUMORO1,2,* & DYAH HESTI WARDHANI1,2

 

1Doctorate Program of Chemical Engineering, Faculty of Engineering, Universitas Diponegoro, Semarang, Indonesia 50275

2Institute of Food and Remedies Biomaterial, Department of Chemical Engineering Faculty of Engineering, Universitas Diponegoro, Semarang, Indonesia 50275

 

Received: 14 April 2022/Accepted: 27 September 2022

 

Abstract

As one of the sustainable food sources, papaya seed oil (PSO) has extraordinary health benefits with unsaturated fatty acids being the main components. In general, the PSO extraction can be accomplished by predetermining the thermophysical properties of the PSO, appropriate use of solvent, and operating conditions. However, the thermophysical properties data of the PSO in the literature are quite scarce, while their quantitative measurements are expensive and time-consuming. For this reason, the group contribution models (GCMs) that have been developed over the last few decades can be essential tools for the estimation of the thermophysical properties of PSO. Moreover, this study also proposes a new GCM to predict PSO thermophysical properties based on its fatty acids composition and validate the accuracy using the experimental data available in the literature. The results showed that the new model has excellent accuracy in estimating the thermophysical properties of PSO at 298.15 K and normal boiling point (Tb). The average absolute relative deviation (AARD) for enthalpy of vaporization values at both temperatures were 2.09% and 2.04%, respectively. Meanwhile, the AARD values for molar volume at both temperatures were 0.48% and 0.86%, respectively. Accordingly, the estimated values of the Hansen's solubility parameters and partition coefficients were very close to the experimental data with a distance (D) of 0.21 and AARD of 0.030%. Therefore, this model can be employed to quickly predict the important PSO properties and other its unknown properties based on its molecular structure for its extraction purpose.

 

Keywords: Extraction; group contribution models; papaya seed oils; thermophysical properties

 

Abstrak

Sebagai salah satu sumber makanan yang mampan, minyak biji betik (PSO) mempunyai manfaat kesihatan yang luar biasa dengan asid lemak tak tepu sebagai komponen utama. Secara amnya, pengekstrakan PSO boleh dicapai dengan menentukan terlebih dahulu sifat termofizik PSO, penggunaan pelarut yang sesuai dan keadaan pengoperasian. Walau bagaimanapun, data sifat termofizik PSO dalam kepustakaan agak terhad, manakala ukuran kuantitatifnya mahal dan memakan masa. Atas sebab ini, model sumbangan kumpulan (GCM) yang telah dibangunkan sejak beberapa dekad yang lalu boleh menjadi alat penting untuk menganggarkan sifat termofizik PSO. Selain itu, kajian ini juga mencadangkan GCM baharu untuk meramalkan sifat termofizik PSO berdasarkan komposisi asid lemaknya dan mengesahkan ketepatan menggunakan data uji kaji yang terdapat dalam kepustakaan. Keputusan menunjukkan bahawa model baharu mempunyai ketepatan yang sangat baik dalam menganggar sifat termofizik PSO pada 298.15 K dan takat didih normal (Tb). Purata sisihan relatif mutlak (AARD) untuk entalpi nilai pengewapan pada kedua-dua suhu masing-masing ialah 2.09% dan 2.04%. Sementara itu, nilai AARD untuk isi padu molar pada kedua-dua suhu masing-masing ialah 0.48% dan 0.86%. Sehubungan itu, nilai anggaran parameter keterlarutan dan pekali pemetakan Hansen adalah sangat hampir dengan data uji kaji dengan jarak (D) 0.21 dan AARD 0.030%. Oleh itu, model ini boleh digunakan untuk meramalkan dengan cepat sifat PSO yang penting dan sifat lain yang tidak diketahui berdasarkan struktur molekulnya untuk tujuan pengekstrakannya.

 

Kata kunci: Minyak biji betik; model sumbangan kumpulan; pengekstrakan; sifat termofizik

 

REFERENCES

Abooali, D. & Sobati, M.A. 2014. Novel method for prediction of normal boiling point and enthalpy of vaporization at normal boiling point of pure refrigerants: A QSPR approach. International Journal of Refrigeration 40: 282-293. https://doi.org/10.1016/j.ijrefrig.2013.12.007

Basařová, P. & Svoboda, V. 1995. Prediction of the enthalpy of vaporization by the group contribution method. Fluid Phase Equilibria 105(1): 27-47. https://doi.org/10.1016/0378-3812(94)02599-V

Batista, M.M., Guirardello, R. & Krähenbühl, M.A. 2015. Determination of the Hansen solubility parameters of vegetable oils, biodiesel, diesel, and biodiesel–diesel blends. Journal of the American Oil Chemists’ Society 92(1): 95-109. https://doi.org/10.1007/s11746-014-2575-2

Benkouider, A.M., Kessas, R., Guella, S., Yahiaoui, A. & Bagui, F. 2014. Estimation of the enthalpy of vaporization of organic components as a function of temperature using a new group contribution method. Journal of Molecular Liquids 194: 48-56. https://doi.org/10.1016/j.molliq.2014.01.006

Berg, J.M., Tymoczko, J.L., Gatto Jr., G.J. & Stryer, L. 2002. Biochemistry 5th ed. New York: W.H. Freeman and Company.

CAS. 2021. SciFinder. Chemical Abstracts Service. https://scifinder.cas.org. Accessed on September 17, 2021.

Ceriani, R., Gani, R. & Liu, Y.A. 2013. Prediction of vapor pressure and heats of vaporization of edible oil/fat compounds by group contribution. Fluid Phase Equilibria 337: 53-59. https://doi.org/10.1016/j.fluid.2012.09.039

Chielle, D.P., Bertuol, D.A., Meili, L., Tanabe, E.H. & Dotto, G.L. 2016a. Convective drying of papaya seeds (Carica papaya L.) and optimization of oil extraction. Industrial Crops and Products 85: 221-228. https://doi.org/10.1016/j.indcrop.2016.03.010

Chielle, D.P., Bertuol, D.A., Meili, L., Tanabe, E.H. & Dotto, G.L. 2016b. Spouted bed drying of papaya seeds for oil production. LWT - Food Science and Technology 65: 852-860. https://doi.org/10.1016/j.lwt.2015.09.022

Constantinou, L. & Gani, R. 1994. New group contribution method for estimating properties of pure compounds. AIChE Journal 40(10): 1697-1710. https://doi.org/10.1002/aic.690401011

De La Peña-Gil, A., Toro-Vazquez, J.F. & Rogers, M.A. 2016. Simplifying hansen solubility parameters for complex edible fats and oils. Food Biophysics 11(3): 283-291. https://doi.org/10.1007/s11483-016-9440-9

Fonseca, L.A.A.P. & Cremasco, M.A. 2021. Group contribution methods to predict enthalpy of vaporization of aromatic and terpene ketones at 298.15 K. Fluid Phase Equilibria 538: 113009. https://doi.org/10.1016/j.fluid.2021.113009

Halvorsen, J.D., Mammel, W.C. & Clements, L.D. 1993. Density estimation for fatty acids and vegetable oils based on their fatty acid composition. Journal of the American Oil Chemists’ Society 70(9): 875-880. https://doi.org/10.1007/BF02545346

Hansen, C.M. 2007. Hansen Solubility Parameters: A Users Handbook. 2nd ed. Boca Raton: CRC Press. https://doi.org/10.1201/9781420006834

Hildebrand, J. & Scott, R.L. 1962. Regular Solutions. Englewood Cliffs: Prentice-Hall.

Ihmels, E.C. & Gmehling, J. 2003. Extension and revision of the group contribution method GCVOL for the prediction of pure compound liquid densities. Industrial and Engineering Chemistry Research 42(2): 408-412. https://doi.org/10.1021/ie020492j

Jhamb, S., Liang, X., Gani, R. & Hukkerikar, A.S. 2018. Estimation of physical properties of amino acids by group-contribution method. Chemical Engineering Science 175: 148-161. https://doi.org/10.1016/j.ces.2017.09.019

Joback, K.G. & Reid, R.C. 1987. Estimation of pure-component properties from group-contributions. Chemical Engineering Communications 57(1-6): 233-243. https://doi.org/10.1080/00986448708960487

Kolská, Z., Růžička, V. & Gani, R. 2005. Estimation of the enthalpy of vaporization and the entropy of vaporization for pure organic compounds at 298.15 K and at normal boiling temperature by a group contribution method. Industrial and Engineering Chemistry Research 44(22): 8436-8454. https://doi.org/10.1021/ie050113x

Kumoro, A.C. 2015. Technology for Extracting Bioactive Compounds from Medicinal Plants. Yogyakarta: Plantaxia.

Kumoro, A.C., Alhanif, M. & Wardhani, D.H. 2020. A critical review on tropical fruits seeds as prospective sources of nutritional and bioactive compounds for functional foods development: A case of Indonesian exotic fruits. International Journal of Food Science 2020: 4051475. https://doi.org/10.1155/2020/4051475

Malacrida, C.R., Kimura, M. & Jorge, N. 2011. Characterization of a high oleic oil extracted from papaya (Carica papaya L.) seeds. Ciência e Tecnologia de Alimentos 31(4): 929-934. https://doi.org/10.1590/s0101-20612011000400016

Marrero, J. & Gani, R. 2002. Group-contribution-based estimation of octanol/water partition coefficient and aqueous solubility. Industrial and Engineering Chemistry Research 41(25): 6623-6633. https://doi.org/10.1021/ie0205290

Meylan, W.M. & Howard, P.H. 1995. Atom/fragment contribution method for estimating octanol–water partition coefficients. Journal of Pharmaceutical Sciences 84(1): 83-92. https://doi.org/10.1002/jps.2600840120

Moldoveanu, S.C. & David, V. 2017. Properties of analytes and matrices determining HPLC selection. In Selection of the HPLC Method in Chemical Analysis. https://doi.org/10.1016/b978-0-12-803684-6.00005-6

Morad, N.A., Mustafa Kamal, A.A., Panau, F. & Yew, T.W. 2000. Liquid specific heat capacity estimation for fatty acids, triacylglycerols, and vegetable oils based on their fatty acid composition. JAOCS, Journal of the American Oil Chemists’ Society 77(9): 1001-1005. https://doi.org/10.1007/s11746-000-0158-6

NIST. 2021. NIST Chemistry WebBook. National Institute of Standards and Technology website: https://webbook.nist.gov/. Accessed on 17 September 2021.

Oliveira, C.E.L. 2017. Determination of thermodynamic properties of terpene compounds present in essential oils by gas chromatography and proposition of group contribution method for estimation of vaporization enthalpies. Universidade Estadual de Campinas.

Royal Society of Chemistry. 2021. Search and Share Chemistry. Retrieved September 17, 2021, from https://www.chemspider.com/

Rustan, A.C. & Drevon, C.A. 2005. Fatty acids: Structures and properties. Encyclopedia of Life Sciences. pp. 1-7. https://doi.org/10.1038/npg.els.0003894

Samaram, S., Mirhosseini, H., Tan, C.P. & Ghazali, H.M. 2013. Ultrasound-assisted extraction (UAE) and solvent extraction of papaya seed oil: Yield, fatty acid composition and triacylglycerol profile. Molecules 18(10): 12474-12487. https://doi.org/10.3390/molecules181012474

Schotte, W. 1992. Prediction of the molar volume at the normal boiling point. The Chemical Engineering Journal 48(3): 167-172. https://doi.org/10.1016/0300-9467(92)80032-6

Sousa, A.M., Andrade, T.A., Errico, M., Coelho, J.P., Filipe, R.M. & Matos, H.A. 2019. Fatty acid content in biomasses: State-of-the-art and novel physical property estimation methods. International Journal of Chemical Engineering 2019: 2430234. https://doi.org/10.1155/2019/2430234

Stefanis, E., Constantinou, L., Tsivintzelis, I. & Panayiotou, C. 2005. New group-contribution method for predicting temperature-dependent properties of pure organic compounds. International Journal of Thermophysics 26(5): 1369-1388. https://doi.org/10.1007/s10765-005-8092-7

Stefanis, E. & Panayiotou, C. 2008. Prediction of Hansen solubility parameters with a new group-contribution method. International Journal of Thermophysics 29(2): 568-585. https://doi.org/10.1007/s10765-008-0415-z

Su, W., Zhao, L. & Deng, S. 2017. Group contribution methods in thermodynamic cycles: Physical properties estimation of pure working fluids. Renewable and Sustainable Energy Reviews 79: 984-1001. https://doi.org/10.1016/j.rser.2017.05.164

Tan, S.S. 2019. Papaya (Carica papaya L.) seed oil. Fruit Oils: Chemistry and Functionality, edited by Ramadan, M. Springer: Cham. pp. 615-626. https://doi.org/10.1007/978-3-030-12473-1_31

Tu, C.H. & Liu, C.P. 1996. Group-contribution estimation of the enthalpy of vaporization of organic compounds. Fluid Phase Equilibria 121(1-2): 45-65. https://doi.org/10.1016/0378-3812(96)03008-7

Yanty, N.A.M., Marikkar, J.M.N., Nusantoro, B.P., Long, K. & Ghazali, H.M. 2014. Physico-chemical characteristics of papaya (Carica papaya L.) seed oil of the Hong Kong/Sekaki variety. Journal of Oleo Science 63(9): 885-892. https://doi.org/10.5650/jos.ess13221

Yaws, C.L. 1999. Chemical Properties Handbook: Physical, Thermodynamic, Environmental, Transport, Safety, and Health Related Properties for Organic and Inorganic Chemicals. McGrawHill Education. p. 779. http://www.knovel.com/knovel2/Toc.jsp?BookID=49

 

*Corresponding author; email: andrewkomoro@che.undip.ac.id

 

 

 

previous