Sains Malaysiana 52(1)(2023): 107-127
http://doi.org/10.17576/jsm-2023-5201-09
Prediction of the Thermophysical Properties of Papaya Seed Oil
Influencing Solvent Selection Based on the New Group Contribution Model
(Ramalan Sifat Termofizik Minyak Biji Betik Mempengaruhi Pemilihan Pelarut Berdasarkan Model Sumbangan Kumpulan Baru)
MISBAHUDIN
ALHANIF1,2, ANDRI CAHYO KUMORO1,2,* & DYAH HESTI WARDHANI1,2
1Doctorate
Program of Chemical Engineering, Faculty of Engineering, Universitas Diponegoro, Semarang, Indonesia 50275
2Institute of Food and
Remedies Biomaterial, Department of Chemical Engineering Faculty of
Engineering, Universitas Diponegoro,
Semarang, Indonesia 50275
Received: 14 April 2022/Accepted: 27 September 2022
Abstract
As one of the sustainable food sources, papaya seed
oil (PSO) has extraordinary health benefits with unsaturated fatty acids being
the main components. In general, the PSO extraction can be accomplished by
predetermining the thermophysical properties of the PSO, appropriate use of
solvent, and operating conditions. However, the thermophysical properties data
of the PSO in the literature are quite scarce, while their quantitative
measurements are expensive and time-consuming. For this reason, the group
contribution models (GCMs) that have been developed over the last few decades
can be essential tools for the estimation of the thermophysical properties of
PSO. Moreover, this study also proposes a new GCM to predict PSO thermophysical
properties based on its fatty acids composition and validate the accuracy using
the experimental data available in the literature. The results showed that the
new model has excellent accuracy in estimating the thermophysical properties of
PSO at 298.15 K and normal boiling point (Tb). The average absolute relative
deviation (AARD) for enthalpy of vaporization values at both temperatures were
2.09% and 2.04%, respectively. Meanwhile, the AARD values for molar volume at
both temperatures were 0.48% and 0.86%, respectively. Accordingly, the
estimated values of the Hansen's solubility parameters and partition
coefficients were very close to the experimental data with a distance (D) of
0.21 and AARD of 0.030%. Therefore, this model can be employed to quickly
predict the important PSO properties and other its unknown properties based on
its molecular structure for its extraction purpose.
Keywords: Extraction; group contribution models;
papaya seed oils; thermophysical properties
Abstrak
Sebagai salah satu sumber makanan yang mampan, minyak biji betik (PSO) mempunyai manfaat kesihatan yang luar biasa dengan asid lemak tak tepu sebagai komponen utama. Secara amnya, pengekstrakan PSO boleh dicapai dengan menentukan terlebih dahulu sifat termofizik PSO, penggunaan pelarut yang sesuai dan keadaan pengoperasian. Walau bagaimanapun, data sifat termofizik PSO dalam kepustakaan agak terhad, manakala ukuran kuantitatifnya mahal dan memakan masa. Atas sebab ini, model sumbangan kumpulan (GCM) yang telah dibangunkan sejak beberapa dekad yang lalu boleh menjadi alat penting untuk menganggarkan sifat termofizik PSO. Selain itu, kajian ini juga mencadangkan GCM baharu untuk meramalkan sifat termofizik PSO berdasarkan komposisi asid lemaknya dan mengesahkan ketepatan menggunakan data uji kaji yang terdapat dalam kepustakaan. Keputusan menunjukkan bahawa model baharu mempunyai ketepatan yang sangat baik dalam menganggar sifat termofizik PSO pada 298.15 K dan takat didih normal (Tb). Purata sisihan relatif mutlak (AARD) untuk entalpi nilai pengewapan pada kedua-dua suhu masing-masing ialah 2.09% dan
2.04%. Sementara itu, nilai AARD untuk isi padu molar pada kedua-dua suhu masing-masing ialah 0.48% dan
0.86%. Sehubungan itu, nilai anggaran parameter keterlarutan dan pekali pemetakan Hansen adalah sangat hampir dengan data uji kaji dengan jarak (D) 0.21 dan AARD 0.030%. Oleh itu,
model ini boleh digunakan untuk meramalkan dengan cepat sifat PSO yang penting dan sifat lain yang tidak diketahui berdasarkan struktur molekulnya untuk tujuan pengekstrakannya.
Kata kunci: Minyak biji betik; model sumbangan kumpulan; pengekstrakan; sifat termofizik
REFERENCES
Abooali, D. &
Sobati, M.A. 2014. Novel method for prediction of normal boiling point and
enthalpy of vaporization at normal boiling point of pure refrigerants: A QSPR
approach. International Journal of Refrigeration 40: 282-293.
https://doi.org/10.1016/j.ijrefrig.2013.12.007
Basařová, P. & Svoboda, V. 1995. Prediction of the enthalpy of
vaporization by the group contribution method. Fluid Phase Equilibria 105(1): 27-47. https://doi.org/10.1016/0378-3812(94)02599-V
Batista, M.M., Guirardello, R. & Krähenbühl, M.A. 2015. Determination
of the Hansen solubility parameters of vegetable oils, biodiesel, diesel, and
biodiesel–diesel blends. Journal of the American Oil Chemists’ Society 92(1): 95-109. https://doi.org/10.1007/s11746-014-2575-2
Benkouider, A.M., Kessas, R., Guella, S., Yahiaoui, A. & Bagui, F.
2014. Estimation of the enthalpy of vaporization of organic components as a
function of temperature using a new group contribution method. Journal of
Molecular Liquids 194: 48-56. https://doi.org/10.1016/j.molliq.2014.01.006
Berg, J.M., Tymoczko, J.L., Gatto Jr., G.J. & Stryer, L. 2002. Biochemistry 5th ed. New York: W.H. Freeman and Company.
CAS. 2021. SciFinder. Chemical Abstracts Service.
https://scifinder.cas.org. Accessed on September 17, 2021.
Ceriani, R., Gani, R. & Liu, Y.A. 2013. Prediction of vapor pressure
and heats of vaporization of edible oil/fat compounds by group contribution. Fluid
Phase Equilibria 337: 53-59. https://doi.org/10.1016/j.fluid.2012.09.039
Chielle, D.P., Bertuol, D.A., Meili, L., Tanabe, E.H. & Dotto, G.L.
2016a. Convective drying of papaya seeds (Carica papaya L.) and
optimization of oil extraction. Industrial Crops and Products 85:
221-228. https://doi.org/10.1016/j.indcrop.2016.03.010
Chielle, D.P., Bertuol, D.A., Meili, L., Tanabe, E.H. & Dotto, G.L.
2016b. Spouted bed drying of papaya seeds for oil production. LWT - Food
Science and Technology 65: 852-860.
https://doi.org/10.1016/j.lwt.2015.09.022
Constantinou, L. & Gani, R. 1994. New group contribution method for
estimating properties of pure compounds. AIChE Journal 40(10):
1697-1710. https://doi.org/10.1002/aic.690401011
De La Peña-Gil, A., Toro-Vazquez, J.F. & Rogers, M.A. 2016.
Simplifying hansen solubility parameters for complex edible fats and oils. Food
Biophysics 11(3): 283-291. https://doi.org/10.1007/s11483-016-9440-9
Fonseca, L.A.A.P. & Cremasco, M.A. 2021. Group contribution methods to
predict enthalpy of vaporization of aromatic and terpene ketones at 298.15 K. Fluid
Phase Equilibria 538: 113009. https://doi.org/10.1016/j.fluid.2021.113009
Halvorsen, J.D., Mammel, W.C. & Clements, L.D. 1993. Density
estimation for fatty acids and vegetable oils based on their fatty acid
composition. Journal of the American Oil Chemists’ Society 70(9):
875-880. https://doi.org/10.1007/BF02545346
Hansen, C.M. 2007. Hansen Solubility Parameters: A Users Handbook. 2nd
ed. Boca Raton: CRC Press. https://doi.org/10.1201/9781420006834
Hildebrand, J. & Scott, R.L. 1962. Regular Solutions. Englewood
Cliffs: Prentice-Hall.
Ihmels, E.C. & Gmehling, J. 2003. Extension and revision of the group
contribution method GCVOL for the prediction of pure compound liquid densities. Industrial and Engineering Chemistry Research 42(2): 408-412.
https://doi.org/10.1021/ie020492j
Jhamb, S., Liang, X., Gani, R. & Hukkerikar, A.S. 2018. Estimation of
physical properties of amino acids by group-contribution method. Chemical
Engineering Science 175: 148-161. https://doi.org/10.1016/j.ces.2017.09.019
Joback, K.G. & Reid, R.C. 1987. Estimation of pure-component
properties from group-contributions. Chemical Engineering Communications 57(1-6): 233-243. https://doi.org/10.1080/00986448708960487
Kolská, Z., Růžička, V. & Gani, R. 2005. Estimation of the
enthalpy of vaporization and the entropy of vaporization for pure organic compounds
at 298.15 K and at normal boiling temperature by a group contribution method. Industrial
and Engineering Chemistry Research 44(22): 8436-8454.
https://doi.org/10.1021/ie050113x
Kumoro, A.C. 2015. Technology for Extracting Bioactive Compounds from
Medicinal Plants. Yogyakarta: Plantaxia.
Kumoro, A.C., Alhanif, M. & Wardhani, D.H. 2020. A critical review on
tropical fruits seeds as prospective sources of nutritional and bioactive
compounds for functional foods development: A case of Indonesian exotic fruits. International Journal of Food Science 2020: 4051475.
https://doi.org/10.1155/2020/4051475
Malacrida, C.R., Kimura, M. & Jorge, N. 2011. Characterization of a
high oleic oil extracted from papaya (Carica papaya L.) seeds. Ciência
e Tecnologia de Alimentos 31(4): 929-934.
https://doi.org/10.1590/s0101-20612011000400016
Marrero, J. & Gani, R. 2002. Group-contribution-based estimation of
octanol/water partition coefficient and aqueous solubility. Industrial and
Engineering Chemistry Research 41(25): 6623-6633.
https://doi.org/10.1021/ie0205290
Meylan, W.M. & Howard, P.H. 1995. Atom/fragment contribution method
for estimating octanol–water partition coefficients. Journal of
Pharmaceutical Sciences 84(1): 83-92.
https://doi.org/10.1002/jps.2600840120
Moldoveanu, S.C. & David, V. 2017. Properties of analytes and matrices
determining HPLC selection. In Selection of the HPLC Method in Chemical
Analysis. https://doi.org/10.1016/b978-0-12-803684-6.00005-6
Morad, N.A., Mustafa Kamal, A.A., Panau, F. & Yew, T.W. 2000. Liquid
specific heat capacity estimation for fatty acids, triacylglycerols, and
vegetable oils based on their fatty acid composition. JAOCS, Journal of the
American Oil Chemists’ Society 77(9): 1001-1005.
https://doi.org/10.1007/s11746-000-0158-6
NIST. 2021. NIST Chemistry WebBook. National Institute of Standards
and Technology website: https://webbook.nist.gov/. Accessed on 17 September
2021.
Oliveira, C.E.L. 2017. Determination of thermodynamic properties of
terpene compounds present in essential oils by gas chromatography and
proposition of group contribution method for estimation of vaporization
enthalpies. Universidade Estadual de Campinas.
Royal Society of Chemistry. 2021. Search and Share Chemistry.
Retrieved September 17, 2021, from https://www.chemspider.com/
Rustan, A.C. & Drevon, C.A. 2005. Fatty acids: Structures and
properties. Encyclopedia of Life Sciences. pp. 1-7.
https://doi.org/10.1038/npg.els.0003894
Samaram, S., Mirhosseini, H., Tan, C.P. & Ghazali, H.M. 2013.
Ultrasound-assisted extraction (UAE) and solvent extraction of papaya seed oil:
Yield, fatty acid composition and triacylglycerol profile. Molecules 18(10): 12474-12487. https://doi.org/10.3390/molecules181012474
Schotte, W. 1992. Prediction of the molar volume at the normal boiling
point. The Chemical Engineering Journal 48(3): 167-172.
https://doi.org/10.1016/0300-9467(92)80032-6
Sousa, A.M., Andrade, T.A., Errico, M., Coelho, J.P., Filipe, R.M. &
Matos, H.A. 2019. Fatty acid content in biomasses: State-of-the-art and novel
physical property estimation methods. International Journal of Chemical
Engineering 2019: 2430234. https://doi.org/10.1155/2019/2430234
Stefanis, E., Constantinou, L., Tsivintzelis, I. & Panayiotou, C.
2005. New group-contribution method for predicting temperature-dependent
properties of pure organic compounds. International Journal of Thermophysics 26(5): 1369-1388. https://doi.org/10.1007/s10765-005-8092-7
Stefanis, E. & Panayiotou, C. 2008. Prediction of Hansen solubility
parameters with a new group-contribution method. International Journal of
Thermophysics 29(2): 568-585. https://doi.org/10.1007/s10765-008-0415-z
Su, W., Zhao, L. & Deng, S. 2017. Group contribution methods in
thermodynamic cycles: Physical properties estimation of pure working fluids. Renewable
and Sustainable Energy Reviews 79: 984-1001.
https://doi.org/10.1016/j.rser.2017.05.164
Tan, S.S. 2019. Papaya (Carica papaya L.) seed oil. Fruit Oils:
Chemistry and Functionality, edited by Ramadan, M. Springer: Cham. pp.
615-626. https://doi.org/10.1007/978-3-030-12473-1_31
Tu, C.H. & Liu, C.P. 1996. Group-contribution estimation of the
enthalpy of vaporization of organic compounds. Fluid Phase Equilibria 121(1-2): 45-65. https://doi.org/10.1016/0378-3812(96)03008-7
Yanty, N.A.M., Marikkar, J.M.N., Nusantoro, B.P., Long, K. & Ghazali,
H.M. 2014. Physico-chemical characteristics of papaya (Carica papaya L.)
seed oil of the Hong Kong/Sekaki variety. Journal of Oleo Science 63(9):
885-892. https://doi.org/10.5650/jos.ess13221
Yaws, C.L. 1999. Chemical Properties Handbook: Physical, Thermodynamic,
Environmental, Transport, Safety, and Health Related Properties for Organic and
Inorganic Chemicals. McGrawHill Education. p. 779.
http://www.knovel.com/knovel2/Toc.jsp?BookID=49
*Corresponding author;
email: andrewkomoro@che.undip.ac.id
|